The following organizations provided review of the materials and/or support American Red Cross Lifeguarding:
This manual is part of the American Red Cross Lifeguarding program. By itself, it does not constitute complete and comprehensive training. Visit redcross.org to learn more about this program.

The emergency care procedures outlined in this book reflect the standard of knowledge and accepted emergency practices in the United States at the time this book was published. It is the reader’s responsibility to stay informed of changes in emergency care procedures.

PLEASE READ THE FOLLOWING TERMS AND CONDITIONS BEFORE AGREEING TO ACCESS AND DOWNLOAD THE AMERICAN RED CROSS MATERIALS. BY DOWNLOADING THE MATERIALS, YOU HEREBY AGREE TO BE BOUND BY THE TERMS AND CONDITIONS.

The downloadable electronic materials, including all content, graphics, images, and logos, are copyrighted by and the exclusive property of The American National Red Cross (“Red Cross”). Unless otherwise indicated in writing by the Red Cross, the Red Cross grants you (“recipient”) the limited right to download, print, photocopy and use the electronic materials, subject to the following restrictions:

- The recipient is prohibited from selling electronic versions of the materials.
- The recipient is prohibited from revising, altering, adapting, or modifying the materials.
- The recipient is prohibited from creating any derivative works incorporating, in part or in whole, the content of the materials.
- The recipient is prohibited from downloading the materials and putting them on their own website without Red Cross permission.

Any rights not expressly granted herein are reserved by the Red Cross. The Red Cross does not permit its materials to be reproduced or published without advance written permission from the Red Cross. To request permission to reproduce or publish Red Cross materials, please submit your written request to The American National Red Cross.

© 2012 American National Red Cross. All rights reserved.

The Red Cross emblem, American Red Cross® and the American Red Cross logo are trademarks of The American National Red Cross and protected by various national statutes.

The Boy Scouts of America Corporate Trademark and “PREPARED . FOR LIFE.” are trademarks or registered trademarks of the Boy Scouts of America in the United States and/or other countries. All rights reserved. Used with Permission.

Published by Krames StayWell Strategic Partnerships Division

Printed in the United States of America

ISBN: 978-1-58480-487-1

Scan this code with your smartphone to access free skill refreshers, or visit redcross.org/LGrefresher.
Acknowledgments

This manual is dedicated to the thousands of employees and volunteers of the American Red Cross who contribute their time and talent to supporting and teaching lifesaving skills worldwide and to the thousands of course participants and other readers who have decided to be prepared to take action when an emergency strikes.

This manual reflects the 2010 Consensus on Science for CPR and Emergency Cardiovascular Care and the Guidelines 2010 for First Aid. These treatment recommendations and related training guidelines have been reviewed by the American Red Cross Scientific Advisory Council, a panel of nationally recognized experts in fields that include emergency medicine, occupational health, sports medicine, school and public health, emergency medical services (EMS), aquatics, emergency preparedness and disaster mobilization. This manual also reflects the United States Lifeguarding Standards: A Review and Report of the United States Lifeguard Standards Coalition, a collaborative effort of the American Red Cross, the United States Lifesaving Association and the YMCA of the USA.

Many individuals shared in the development and revision process in various supportive, technical and creative ways. The American Red Cross Lifeguarding Manual was developed through the dedication of both employees and volunteers. Their commitment to excellence made this manual possible.

The following members of the American Red Cross Scientific Advisory Council also provided guidance and review:

David Markenson, MD, FAAP, EMT-P
Chair, American Red Cross Scientific Advisory Council
Chief, Pediatric Emergency Medicine
Maria Fareri Children’s Hospital
Westchester Medical Center
Valhalla, New York

Peter Wernicki, MD
Aquatics Chair, American Red Cross Scientific Advisory Council
Sports Medicine Orthopedic Surgeon
International Lifesaving Federation Medical Committee
Past Chair
U.S. Lifesaving Association
Medical Advisor
Vero Beach, Florida

Francesco A. Pia, PhD
Member, American Red Cross Scientific Advisory Council
Water Safety Films, Inc.
President, Pia Consulting Services
Larchmont, New York

S. Robert Seitz, M.Ed., RN, NREMT-P
Member, American Red Cross Scientific Advisory Council
University of Pittsburgh
Center for Emergency Medicine
Pittsburgh, Pennsylvania

The Sounding Board for this edition included:

Joyce A. Bathke
Chief Administrative Officer
American Red Cross St. Louis Area Chapter
St. Louis, Missouri

David W. Bell, PhD
National Aquatic Committee
National Health and Safety Committee
Boy Scouts of America
Ponca City, Oklahoma

Terri Lees
Member, American Red Cross Scientific Advisory Council
Aquatic Supervisor
North Kansas City Community Center
North Kansas City, Missouri

Roy R. Fielding
Member, American Red Cross Scientific Advisory Council
University of North Carolina–Charlotte, Department of Kinesiology
Coordinator, Exercise Science/Director of Aquatics
Charlotte, North Carolina

Pete DeQuincy
Aquatic Supervisor
East Bay Regional Park District
Oakland, California
Shawn DeRosa, JD, EMT-B
Manager of Aquatic Facilities and Safety Officer for Intercollegiate Athletics
The Pennsylvania State University
University Park, Pennsylvania

Scott E. Gerding
Sales Manager
Mid-East Division
American Red Cross
Columbus, Ohio

Juliene R. Hefter
Deputy Director
Wisconsin Park & Recreation Association
Owner, Safety First Aquatics, LLC
Greendale, Wisconsin

Carolyn Hollingsworth-Pofok
Director of Recreation and Events
Millcreek MetroParks
Canfield, Ohio

William A.J. Kirkner, JD
Aquatics Director
JCC of Greater Baltimore
Reisterstown, Maryland

Joetta R. Jensen
Assistant Professor and Director of Aquatics
Hampton University
Hampton, Virginia

Rhonda Mickelson
Director of Standards
American Camp Association
Estes Park, Colorado

Edwin Pounds
Aquatics Manager
City of Pearland
Pearland, Texas

Clayton D. Shuck
Deputy Manager of Recreation
South Suburban Parks and Recreation
Centennial, Colorado

Thomas C. Werts
President
Aquatics Safety Consulting
Kissimmee, Florida

The following individuals participated as Waterfront and Waterpark Working Group members:

Adam Abajian
Recreation Program Manager/Lakefront Operations
City of Evanston
Evanston, Illinois

Darwin DeLappa
Director of Water Safety
New York State Parks and Recreation
Queensbury, New York

Luiz A. Morizot-Leite
Captain, Ocean Rescue Lifeguard, Miami-Dade
Fire Rescue Department
Miami-Dade County, Florida

Robert E. Ogoreuc
Assistant Professor
Slippery Rock University
Slippery Rock, Pennsylvania

William J. Frazier
Aquatic Operations Manager
Massanutten Resort
McGaheysville, Virginia

Lee Hovis
Director of Recreation Operations
Nocatee Waterpark Recreation
Ponte Vedra Beach, Florida

Daniel Llanas
Director of Support Services
Busch Entertainment Corporation
San Antonio, Texas

Scott Mersinger
Aquatics Director
Lost Rios Waterpark
Wisconsin Dells, Wisconsin

The following individuals provided external review:

Alex Antoniou
Director of Educational Programs
National Swimming Pool Foundation
Colorado Springs, Colorado

Jerome H. Modell, MD., D Sc (Hon.)
Emeritus Professor of Anesthesiology
Courtesy Professor of Psychiatry
Courtesy Professor of Large Animal Clinical Sciences
Colleges of Medicine & Veterinary Medicine, University of Florida
Gainesville, Florida

The American Red Cross thanks Jorge L. Olaves H., Ed S, Florida A&M University, for his contributions to this manual.
This manual is for lifeguards, whom the American Red Cross profoundly thanks for their commitment to safeguarding the lives of children and adults who enjoy aquatic facilities. As the number of community pools and waterparks grows nationwide, participation in aquatic activities is also growing. With this growth comes the need for even more lifeguards.

To protect this growing number of participants, lifeguards must receive proper and effective training. Lifeguards also need to maintain their skills to ensure their ability to work effectively with others as a part of a lifeguard team. Participation in frequent and ongoing training is essential.

Lifeguards must be able to recognize hazardous situations to prevent injury. They must be able to supervise swimmers, minimize dangers, educate facility users about safety, enforce rules and regulations, provide assistance and perform rescues.

Being a lifeguard carries a significant professional responsibility, but lifeguarding also offers opportunities for personal growth. Experience as a lifeguard can help one develop professional and leadership skills that will last a lifetime—through college, career and family.

There are a half million American Red Cross-trained lifeguards working at swimming pools, waterparks and waterfronts across our country. Every day on the job, these lifeguards are part of a critical force for good—ensuring the safety of patrons and protecting lives.
CONTENTS

CHAPTER 1

The Professional Lifeguard
- Introduction .. 2
- Responsibilities of a Professional Lifeguard 2
- Characteristics of a Professional Lifeguard 3
- Decision Making ... 6
- Legal Considerations ... 6
- Continuing Your Training 8
- Being Part of the Team 9
- Wrap-Up ... 10

CHAPTER 2

Facility Safety
- Rescue Equipment .. 12
- Facility Safety Checks 15
- Weather Conditions ... 25
- Rules and Regulations 27
- Management and Safety 30
- Wrap-Up ... 32

CHAPTER 3

Surveillance and Recognition
- An Overview of the Process of Drowning 34
- Effective Surveillance 34
- Wrap-Up ... 49

CHAPTER 4

Injury Prevention
- How Injuries Happen .. 53
- Injury-Prevention Strategies 53
- Effective Guarding–Injury Prevention Challenges 56
- Wrap-Up ... 70

CHAPTER 5

Emergency Action Plans
- Types of Emergency Action Plans 72
- Implementing an Emergency Action Plan 76
- Emergencies Outside of Your Zone 85
- Wrap-Up ... 86

CHAPTER 6

Water Rescue Skills
- General Procedures for a Water Emergency 88
- Train to the Standard, Meet the Objective 90
- Rescue Skills ... 90
- Additional Rescue Skills for Waterfronts 94
- Special Situations for Waterfronts 95
- When Things Do Not Go as Practiced 100
- Wrap-Up ... 102

CHAPTER 7

Before Providing Care and Victim Assessment
- Bloodborne Pathogens 132
- How Pathogens Spread 133
- Preventing the Spread of Bloodborne Pathogens 135
- If You Are Exposed ... 140
- General Procedures for Injury or Sudden Illness on Land 140
- Wrap-Up ... 147

CHAPTER 8

Breathing Emergencies
- Recognizing and Caring for Breathing Emergencies 160
- Giving Ventilations .. 163
- Airway Obstruction ... 169
- Emergency Oxygen ... 172
- Oxygen Delivery Devices 175
- Suctioning ... 180
- Wrap-Up ... 180
CONTENTS

CHAPTER 9
Cardiac Emergencies
- Cardiac Chain of Survival .. 194
- Heart Attack ... 194
- Cardiac Arrest ... 196
- CPR .. 196
- AEDs .. 198
- Multiple-Rescuer Response ... 203
- Wrap-Up .. 206

CHAPTER 10
First Aid
- Responding to Injuries and Illnesses .. 215
- Secondary Assessment ... 216
- Sudden Illness .. 217
- Skin and Soft Tissue Injuries ... 220
- Bites and Stings ... 228
- Poisoning ... 232
- Heat-Related Illnesses and Cold-Related Emergencies 233
- Injuries to Muscles, Bones and Joints ... 235
- Emergency Childbirth ... 237
- Wrap-Up .. 238

CHAPTER 11
Caring for Head, Neck and Spinal Injuries
- Causes of Head, Neck and Spinal Injuries 247
- Caring for Head, Neck and Spinal Injuries 248
- Wrap-Up .. 257

Glossary .. 273
References .. 280
Index .. 285
The Professional Lifeguard

Lifeguarding can be a rewarding job. Being a lifeguard is:

- **Dynamic.** Each day on the job presents you with new situations.
- **Challenging.** You need to make quick judgments to do the job well.
- **Important.** You may need to respond to an emergency at any moment.
- **Inspiring.** With the knowledge, skills and attitude you acquire through your lifeguard training, you can save a life.

This chapter describes the characteristics, responsibilities and rewards of being a professional lifeguard. It also discusses the importance of maintaining lifeguarding knowledge and skills.
INTRODUCTION

You are training to become a professional lifeguard, taking responsibility for the lives of people who are participating in a variety of aquatic activities. As a professional rescuer with a legal responsibility to act in an emergency, you must be self-disciplined and confident in your knowledge and skills. You need to have solid public-relations, customer-service and conflict-resolution skills. In addition, you must be willing to be a leader as well as a good team member. Being a lifeguard requires maturity, professionalism and competence in specialized rescue techniques.

The purpose of the American Red Cross Lifeguarding course is to teach you the skills needed to help prevent and respond to aquatic emergencies. This includes land and water rescue skills plus first aid and CPR.

RESPONSIBILITIES OF A PROFESSIONAL LIFEGUARD

As a lifeguard, your primary responsibility is to prevent drowning and other injuries from occurring at your aquatic facility (Figure 1-1). Lifeguards do this in many ways, such as:

- Monitoring activities in and near the water through patron surveillance.
- Preventing injuries by minimizing or eliminating hazardous situations or behaviors.
- Enforcing facility rules and regulations and educating patrons about them.
- Recognizing and responding quickly and effectively to all emergencies.
- Administering first aid and CPR, including using an automated external defibrillator (AED) and, if trained, administering emergency oxygen when needed.
- Working as a team with other lifeguards, facility staff and management.

A lifeguard also is responsible for other tasks, which are secondary responsibilities. Secondary responsibilities must never interfere with patron surveillance. Secondary responsibilities can include:

- Testing the pool water chemistry.
- Assisting patrons (conducting safety orientations, administering swim tests and fitting life jackets).
- Cleaning or performing maintenance.
- Completing records and reports.
- Performing opening duties, closing duties or facility safety checks and inspections.
CHARACTERISTICS OF A PROFESSIONAL LIFEGUARD

To fulfill the responsibilities of a professional lifeguard, you must be mentally, physically and emotionally prepared at all times to do your job (Figure 1-2). As a professional lifeguard you must be:

- **Knowledgeable and skilled.** Have the appropriate knowledge and skills to help prevent and respond to emergencies. Successful completion of this Lifeguarding course is your initial training. You must maintain your knowledge and skills through annual or preseason orientation and training, and through regular, frequent in-service training.

- **Reliable.** Arrive at work on time, accept assignments willingly, be committed to your work and respond to all incidents quickly and effectively.

- **Mature.** Be a leader but also be a good team member, act responsibly, take initiative and obey all facility rules, leading others by example.

- **Courteous and consistent.** Be polite and enforce the rules firmly and equally for everyone (Figure 1-3).

- **Positive.** Show a positive attitude in all job activities.

- **Professional.** Look professional and be prepared to respond appropriately to any situation by:
 - Wearing the lifeguard uniform only when on duty.
Sitting or standing upright at the lifeguarding station.
- Being well groomed.
- Keeping rescue equipment positioned for immediate use when on duty.
- Keeping your eyes focused on your assigned zone of responsibility at all times.
- Keeping interactions with others brief and not letting them interrupt patron surveillance.
- Transferring and handling equipment carefully.
- Observing all facility rules, regulations and policies.
- Eating only when on break or off surveillance duty.

Healthy and fit. To stay in good physical condition, a professional lifeguard must:

- Exercise. An exercise program should include swimming and water exercises that focus on building endurance and developing strength (Figure 1-4). Regular exercise helps you to stay alert, cope with stress and fatigue and perform strenuous rescues.
- Eat and hydrate properly. Good nutrition and a balanced diet help to provide the energy needed to stay alert and active. Drink plenty of water to prevent dehydration.
- Rest adequately. Proper rest and sleep during off-duty hours are essential for staying alert while on duty.
- Protect yourself from sun exposure. Overexposure to the sun’s ultraviolet (UV) rays can cause many problems, such as fatigue, sunburn, skin cancer, dehydration, heat exhaustion and heat stroke. To prevent these problems:
 - Use a sunscreen with a sun protection factor (SPF) of at least 15, re-applying at regular intervals.
 - Use an umbrella or shade structure for sun protection and to help keep cool.
 - Wear a shirt and hat with a brim that shades your face, ears and the back of your neck and use polarized sunglasses with UVA/UVB protection.
 - Drink plenty of water.
 - Take breaks in cool or shaded areas.

As a professional lifeguard, there are also some things you must not do. Keep the following in mind:

- Do not leave your lifeguard station while on surveillance duty.
- Do not use mobile phones or other devices for personal calls, texting or other types of communication when on duty.
- Do not slouch in a lifeguard stand. Always be attentive and sit or stand upright when on surveillance duty.
- Do not participate in conversations at the lifeguard station.
- Do not eat at the lifeguard station.
Do not leave the facility while on duty.
Do not use alcohol or drugs. Alcohol or drugs can negatively affect job performance and can jeopardize the safety of patrons, co-workers and yourself.

SWIMMING FOR FITNESS

Getting to a victim, executing water-based rescues and moving the victim to safety, and performing life-sustaining resuscitation require you to have adequate strength and endurance at a moment’s notice. This means that you need to constantly maintain or improve your personal level of fitness. Luckily, most lifeguards have access to one of the most versatile pieces of fitness equipment available, the water.

There are two main approaches to improving your level of fitness: improving endurance and increasing intensity. You can improve your endurance by practicing more, whether by swimming longer distances or for longer periods of time.

When exercising to increase endurance, you must commit to a regular, consistent workout schedule. Count the number of pool lengths that you can swim without having to stop to take a break. Your goal should be to increase this amount slightly each time you practice. At the beginning, you should be able to swim at least 300 yards without stopping. Try to build up to a competitive mile, which is about 1650 yards, or 66 lengths of a 25-yard pool. Once you build your endurance to this level, you will find it easy to practice even longer distances.

If your practice time is limited, you may choose to focus on the intensity of your swim. Typically, when a person is doing an activity for a long period of time, he or she begins to slow down as muscles become fatigued. Strength is built by forcing muscles to work at or beyond their current peak level, which requires maintaining—or increasing—your level of effort over your period of exercise.

In swimming, this can be done through interval training. Intervals are a series of repeat swims of the same distance and time interval, each done at the same high level of effort. There is a rest period between the time spent swimming that depends on the speed of the swim. The entire swim series is a set. As an example, an interval set is “5 x 100 on 1:30.” This means that the 500-yard swim is broken up into five 100-yard swims, with 1:30 being the total amount of time for the swim and rest. In this example, a swimmer who swims the 100 in 1:15, has 15 seconds available for rest. This short rest period keeps the heart rate within the target range without dropping back to a resting heart rate. Interval training is the best all-around method to develop both speed and endurance.

As your level of fitness improves, you should combine the endurance and intensity approaches. Breaking down a larger endurance workout into smaller parts allows you to keep up your level of intensity, and it also helps to make the workout more interesting.
DECISION MAKING

Decision making is an important—and sometimes difficult—component of lifeguarding. In an emergency, such as a situation requiring a possible rescue or CPR, you must make critical decisions quickly and act quickly. Your facility should have established emergency action plans (EAPs), which are the written procedures that guide the actions of lifeguards and other staff members in emergencies.

In a non-emergency situation, such as how to work with your facility’s management or how to interact with patrons, you can take more time for deliberation. In these kinds of situations, when time is not a critical factor, a decision-making model can help guide you through the process. The FIND decision-making model can be applied to lifeguarding situations to help you clearly understand what is involved in a decision. FIND means:

- **F** = Figure out the problem.
- **I** = Identify possible solutions.
- **N** = Name the pros and cons for each solution.
- **D** = Decide which solution is best, then act on it.

LEGAL CONSIDERATIONS

To avoid liability, it is important to understand the following legal principles that apply to your role as a professional lifeguard.

- **Duty to act.** While on the job, you have a legal responsibility to act in an emergency. Failure to adhere to this duty could result in legal action.

- **Standard of care.** You are expected to meet a minimum standard of care, which may be established in part by your training program and in part by state or local authorities. This standard requires you to:
 - Communicate proper information and warnings to help prevent injuries.
 - Recognize someone in need of care.
 - Attempt to rescue those needing assistance.
 - Provide emergency care according to your level of training.

- **Negligence.** When a person is injured or suffers additional harm because lifeguards failed to follow the standard of care or failed to act at all, the lifeguards may be considered negligent. Negligence includes:
 - Failing to control or stop any behaviors that could result in further harm or injury.
 - Failing to provide care.
 - Providing inappropriate care.
 - Providing care beyond the scope of practice or level of training.

- **Abandonment.** Once care is initiated, it must be continued until emergency medical services (EMS) personnel or someone with equal or greater training arrives and takes over. You can be held legally responsible for abandoning a person who requires ongoing care if you leave the scene or stop providing care.

- **Confidentiality.** While making a rescue or providing care, you may learn something about the injured or ill person, such as information about medical
conditions, physical problems and medications taken. This person’s right to privacy is protected by laws that require you to keep information learned about the person confidential. Reporters, insurance investigators or attorneys may ask questions following an incident. This information should not be shared with anyone except EMS personnel directly associated with the person’s care, facility management or the facility’s legal counsel. Sharing personal information with individuals not directly associated with an injured person’s medical care may constitute a breach of the victim’s privacy.

Documentation. Properly documenting injuries and incidents is very important. If legal action occurs later, your records and reports can provide legal documentation of what was seen, heard and done at the scene. Complete the required forms as soon as possible after the incident, preferably, immediately after the incident has wrapped up. As time passes, critical details may be forgotten. When completing a report, state the facts of the incident without including your opinion. Once the report is complete, sign and date it and have all responders read the report, then sign and date it as well. A copy of the report should be kept by the facility.

Consent. An injured or ill person must give permission before responders can provide first aid and emergency care (Figure 1-5). To obtain consent:

- State your name.
- State your level of training.
- Ask if you may help.
- Explain that you would like to assess him or her to find out what you think may be wrong or what you can do to help.
- Explain what you plan to do.
- With this information, an ill or injured person can grant his or her informed consent for care. Someone who is unconscious, confused or seriously injured or ill (such as in a nonfatal drowning) may not be able to grant consent. In these cases, the law assumes the victim would give consent if he or she were able to do so. This is called *implied consent*. Implied consent also applies to a minor who needs emergency medical assistance and whose parent or guardian is not present.

Refusal of care. Some injured or ill people may refuse care, even if they desperately need it. Parents also may refuse care for children. Even though someone may be seriously injured, his or her wishes must be honored. In these situations, you should explain why he or she needs care. For significant injuries, you should call EMS personnel to evaluate the situation. For non-life-threatening emergencies, when care is refused and you

Good Samaritan Laws

Most states and the District of Columbia have Good Samaritan laws that protect people against claims of negligence after having provided emergency care in good faith without having accepted anything in return. These laws differ somewhat from state to state but generally help to protect people who act in good faith, within the scope of their training, and who are not negligent.

Some Good Samaritan laws, however, do not provide coverage for individuals who have a legal duty to act, which includes professional lifeguards. Therefore, it is important that lifeguards consult a lawyer or the facility’s legal counsel to determine the degree of protection provided by their state’s Good Samaritan laws.
are asked not to call EMS personnel, make it clear that you are neither denying nor withholding care and that you are not abandoning the victim. You must document any refusal of care. Someone else, such as another lifeguard, should witness the person’s refusal of care and sign a report. Ask the person who refuses care to sign the report as well; if he or she refuses to sign, note that on the report.

CONTINUING YOUR TRAINING

Earning a lifeguarding certification means you have successfully completed a training course and passed written and skill evaluations on a given date. It does not mean that you have learned everything there is to know about lifeguarding. Once hired as a lifeguard, you should expect that you will be required to continue your training.

It is the responsibility of facility management to provide direction and help lifeguards maintain and build on skills and to perform effectively as a team. Expect facility management to provide a pre-service evaluation, annual or preseason orientation and training, a policies and procedures manual and regular in-service training.

Pre-Service Evaluation

Facilities often require lifeguard applicants to hold a current training certificate from a nationally recognized agency, such as the American Red Cross. State codes, insurance company rules and standards of organizations to which your facility belongs may require your employer to evaluate your current skill level. Your employer may have you participate in rescue scenarios to ensure that you understand your responsibilities within your team and are familiar with your facility’s layout and equipment.

Annual or Preseason Orientation and Training

Lifeguards should have annual training. This is especially important for seasonal lifeguards, who can forget knowledge and skills between seasons. Annual training can include review courses or a review of first aid, CPR/AED and lifeguarding knowledge and skills (Figure 1-6).

An orientation session about facility operations and lifeguards’ responsibilities helps both new and returning lifeguards understand the facility, their responsibilities and management’s expectations. The orientation is critical for learning what is unique about your workplace and how it differs from the environment in which you were trained. Ask your employer questions about your facility and become completely familiar with your facility’s operations.
Policies and Procedures Manual

A policies and procedures manual should provide the information that you need to understand what is expected of you, to be able to work safely and to perform your duties effectively. This manual usually includes administrative policies and procedures, personnel policies and guidelines and standard operating procedures.

Regular In-Service Training

In-service training takes place while you are employed as a lifeguard and is designed to help you maintain your knowledge and skills at a professional level (Figure 1-7). It also gives you a chance to practice with other lifeguards at your facility. This will help you to efficiently respond as a team in an emergency.

BEING PART OF THE TEAM

There are two teams at most aquatic facilities: the lifeguard team and the safety team. The lifeguard team is formed whenever two or more lifeguards are on duty. The lifeguard team is part of a larger safety team, which is a network of people who prevent, prepare for, respond to and assist in an emergency at an aquatic facility. To be effective, members of both teams must know, understand and practice the roles that they are assigned in an emergency.

Lifeguard Team

If you work at a facility where two or more lifeguards are on duty at a time, you are part of a lifeguard team. To learn what you should expect from other team members, it is critical that you communicate and practice together. Your ability to respond to an emergency depends in large part on how much you have practiced the facility’s EAPs together and how well you communicate.

By practicing with your team, you will learn how staff members work together in a variety of circumstances (Figure 1-8). Team practice also gives teammates the chance to work on different responder roles together. This is particularly important because team rescues are an integral part of lifeguarding. Several of the rescues presented in this course require more than one rescuer to provide care.
In addition to practicing rescues and response, it is important that the team works to maintain a climate of teamwork. Effective communication, trust, mutual respect, commitment and cooperation are crucial elements for working effectively as a team. Some ways that you can have a positive effect on your team include:

- Arriving to work on time.
- Rotating stations on time.
- Attending in-service trainings.
- Enforcing safety rules in a consistent manner.
- Communicating clearly while treating others with respect.
- Being prepared by maintaining your knowledge, skills and physical fitness.
- Completing secondary responsibilities in a timely and acceptable fashion.

The Emergency Action Plan

The lifeguard team and other staff members must practice the facility’s EAPs together until everyone knows their responsibilities and can perform them effectively.

Because conditions can change throughout the day, you may need to adapt the EAP to a particular situation. Some facilities have created more than one EAP to cover specific situations or conditions. Factors that may affect the steps of an EAP include the number of lifeguards on duty, the number and availability of other safety team members on duty and the types of patron activities occurring.

Safety Team

After your lifeguard team activates the facility’s EAP, the safety team needs to back you up and provide assistance. The main objective of the safety team is to assist you in maintaining a safe environment and providing emergency care.

In addition to the lifeguard team and other facility staff members, the safety team is composed of local emergency service personnel. Other members of the safety team may work off-site and often include upper-level management personnel. Chapter 5 discusses safety team members and their roles and responsibilities.

WRAP-UP

Being a professional lifeguard means being fully prepared for this challenging and important work. Looking and acting professional indicates readiness to do the job. Maintaining professional conduct requires practice and commitment. No one is a natural-born lifeguard; it takes hard work. A lifeguard can meet the challenges and gain the rewards of being a professional through practice, hard work and dedication.
One of your most important responsibilities as a lifeguard is to help ensure that your facility is safe. You do this, in part, by having rescue equipment immediately available, conducting routine safety checks, taking appropriate action during severe weather and being familiar with facility rules. Management also has a role to play, which includes keeping the facility in compliance with the law and making sure that lifeguards are doing their jobs correctly.
RESCUE EQUIPMENT

Aquatic facilities must have the appropriate rescue equipment available for emergency response and in proper working order at all times. Using rescue equipment makes a rescue safer for both you and the victim. You also must have immediate access to communication devices used at your facility to activate an emergency action plan (EAP), which may include a whistle, megaphone, radio, flag or other signaling equipment.

As a lifeguard, you must always wear or carry certain equipment so that it is instantly available in an emergency. The primary piece of rescue equipment used to perform a water rescue is the rescue tube. Another piece of equipment that must be immediately accessible is the backboard, which is used to remove victims from the water. Some facilities, like waterfronts, may use specific or specialty rescue equipment to meet the needs of their particular environments.

Equipment That You Wear or Carry

To respond quickly and appropriately to an emergency, a rescue tube, resuscitation mask and gloves must be instantly available. The best way to ensure this is to always keep the strap of the rescue tube over your shoulder and neck and wear a hip pack containing the gloves and resuscitation mask (Figure 2-1). You should wear the hip pack at all times, even when not on surveillance duty.

Rescue Tubes

The rescue tube is used at pools, waterparks and most non-surf waterfronts. It is a 45- to 54-inch vinyl, foam-filled tube with an attached tow line and shoulder strap. A rescue tube is capable of keeping multiple victims afloat.

When performing patron surveillance, always keep the rescue tube ready to use immediately.

- Keep the strap of the rescue tube over the shoulder and neck.
- Hold the rescue tube across your thighs when sitting in a lifeguard chair or across your stomach when standing.
- Hold or gather the excess line to keep it from getting caught in the chair or other equipment when you move or start a rescue.
Resuscitation Masks

A resuscitation mask is a transparent, flexible device that creates a tight seal over the victim’s mouth and nose to allow you to breathe air into a victim without making mouth-to-mouth contact. All masks should have a one-way valve for releasing exhaled air. Some masks also have an inlet for administering emergency oxygen. Masks come in different sizes to ensure a proper fit and tight seal on adults, children and infants.

Gloves

Disposable (single-use) gloves are used to protect employees that may be exposed to blood or other body fluids. Gloves should be made of non-latex materials, such as nitrile. Gloves also should be powder free.

Equipment You Can Easily Reach

Other first aid and rescue equipment should be easily accessible for emergency use. This additional equipment may include backboards, rescue buoys, other personal protective equipment (PPE), other resuscitation equipment, an automated external defibrillator (AED), first aid supplies and rescue boards.

Backboards

A backboard is the standard piece of equipment used at aquatic facilities to remove victims from the water when they are unable to exit the water on their own or when they have a possible injury to the head, neck or spine. Some backboards have runners on the bottom that allow the board to slide easily onto a deck or pier. A backboard must have a minimum of three body straps to secure a victim in cases of head, neck or spinal injury, in addition to a device for immobilizing the head. Additional straps may be necessary for special removal situations, such as steep inclines or vertical lifts.

Rescue Buoys

A rescue buoy (Figure 2-2), also known as a rescue can or torpedo buoy, often is the primary piece of rescue equipment used at waterfronts and surf beaches. Most rescue buoys are made of lightweight, hard, buoyant plastic and vary in length from 25 to 34 inches. Molded handgrips along the sides and rear of the buoy allow the victim to keep a firm hold on the buoy. Rescue buoys are buoyant enough to support multiple victims.
Personal Protective Equipment

Personal protective equipment (PPE) is the specialized clothing, equipment and supplies used to prevent you from coming into direct contact with a victim’s body fluids. In addition to gloves and resuscitation masks, other PPE may be available at your facility, including gowns, masks, shields and protective eyewear. A blood spill kit should also be available to safely clean up blood.

Bag-Valve-Mask Resuscitator

A bag-valve-mask resuscitator (BVM) is a hand-held device attached to a resuscitation mask that is used to ventilate a victim in respiratory arrest or when performing CPR. BVMs come in various sizes to fit adult, children and infants. The appropriately sized BVM should be used based on the size of the victim. Using a BVM requires two rescuers: one to maintain a tight seal for the mask, and one to squeeze the bag (Figure 2-3).

Other Resuscitation Equipment

In addition to resuscitation masks, other resuscitation equipment is effective in responding to breathing and cardiac emergencies. Use of all of the following supplemental resuscitation equipment is not covered in the Lifeguarding course and requires additional training. This equipment may or may not be used at your facility.

- **Oxygen cylinders and delivery devices.** In a breathing or cardiac emergency, oxygen cylinders and delivery devices are used to administer emergency oxygen to the victim.

- **Suctioning devices.** Manual suction devices are used to remove fluids and foreign matter from the victim’s upper airway. They are lightweight, compact and operated by hand.

- **Airways.** Oropharyngeal and nasopharyngeal airways come in a variety of sizes and are used to help maintain an open airway in a nonbreathing victim. They do this by keeping the tongue away from the back of the throat during resuscitation.

Automated External Defibrillators

An AED is a portable electronic device that analyzes the heart’s rhythm and can deliver an electrical shock, which helps the heart to re-establish an effective rhythm. This is known as defibrillation.
It is used in conjunction with CPR on unconscious victims with no obvious signs of life (movement and breathing). An AED should be available at your facility.

First Aid Kit and Supplies

An adequate inventory of first aid supplies must be available at all aquatic facilities. Common contents of a first aid kit include items used to treat bleeding and wounds and to help stabilize injuries to muscles, bones and joints. Ice packs and rescue blankets also may be included since they may help to treat heat- and cold-related emergencies. Your state or local health department may establish specific requirements for the contents of your first aid kit.

Rescue Board

Some waterfronts use rescue boards as standard equipment. Rescue boards are made of plastic or fiberglass and may include a soft rubber deck. They are shaped similarly to a surf board but usually are larger to accommodate a lifeguard plus one or more victims. Rescue boards are fast, stable and easy to use. They may be used during rescues to quickly paddle out long distances. They also may be used by lifeguards as a patrolling device, with the lifeguard paddling along the outer boundary of the swimming area.

Ring Buoys, Reaching Poles, and Shepherd’s Crooks

A ring buoy, reaching pole and shepherd’s crook often are required by the health department for swimming pools and waterparks. This equipment is not typically used by lifeguards to perform the professional rescues taught in this course. This equipment usually is used by untrained bystanders. If your facility has any of these items, you should learn how to use them.

FACILITY SAFETY CHECKS

Facility safety checks are the primary tool used by aquatic facility staff to ensure overall safety for their facilities. These checks may be performed by lifeguards or by staff that are trained to handle facility operations and maintenance, or by a combination of both (Figure 2-4). A lifeguard supervisor or facility manager will instruct you about the specific procedures for your facility. You should never perform safety checks while also performing patron surveillance. If you identify an equipment problem during your surveillance or if a problem is reported to you, notify a lifeguard supervisor or another lifeguard who is not performing surveillance. If the condition is hazardous, follow your facility protocols and stop patrons from using the equipment or prohibit them from entering a potentially hazardous area.
TYPICAL ITEMS FOUND ON A FACILITY CHECKLIST

The facility safety checklist should include the status of the following items (if they are okay or not okay) and any action required.

Equipment:
Verify that all equipment is in good working order, there is a sufficient number and equipment is in the proper location.

Rescue Equipment
- Rescue tubes and/or buoys
- Rescue board
- Non-motorized craft
- Motorized craft
- Masks and fins
- Reaching pole
- Ring buoy

First Aid Equipment
- Hip packs
 - Resuscitation masks
 - Disposable gloves
 - First aid supplies
- Backboard(s) with head immobilizer and straps
- First aid kit
- AED(s)
- Suctioning equipment
- Emergency oxygen delivery system

Safety Equipment
- Lifeguard stands/stations
- Communication devices – whistles, radios, E-stop(s)
- Telephone – directions for emergency calls posted
- PPE – extra gloves, gowns, face shield, blood spill kit
- Life jackets
- Umbrellas or shade structures
- Sunscreen

Operational Conditions:
As applicable for the environment and facility type.
- Bottom free of hazards
- Water clarity (pools and waterparks should see the bottom)
- Water level
- Water temperature – within specified range
- Air temperature – within specified range
- Weather conditions – safe
- Lighting – underwater and above ground working properly
- Water chemical ranges – within specified range
- Drain covers undamaged and secured
- Suction fittings undamaged and secured
- Circulation system – within range and proper operational condition
 - Flow rates
 - Filter differential
 - Hair/lint strainer
 - Gutter/skimmer baskets
CHAPTER 2 FACILITY SAFETY

Risk Management:
In place, visible, secure, clean, ready for use.
- Depth markings clearly visible
- Swim area sections set up with ropes and/or buoys
- Signage in line of sight for patrons
- Fences and barriers, gates and doors secure
- Walkways/decks clear, accessible, non-slip and free of hazards
- Handrails or guardrails secure
- Ladder rungs or steps secure
- ADA accessibility equipment secure and ready for use
- Diving boards – secure and non-slip
- Starting blocks – secure and non-slip
- Floating features – tethered and secure, undamaged
- Fire extinguishers – charged and ready for use
- Emergency exits – clear, accessible with working lights and alarms

Facility Sanitation:
Clean, non-slip and ready to use
- Pool shell – free of algae, free of scum line
- Deck or shoreline – clean and free of environmental debris, such as animal droppings
- Restrooms/locker rooms
 - Warm, running water
 - Soap
 - Paper products adequately stocked
- First aid station – adequately stocked
- Tables and seating
- Trash receptacles

Administration:
Posted or filed as applicable.
- Zones of surveillance diagrams posted
- Lifeguard rotation plans posted
- EAPs available
- MSDS sheets available
- Staff certifications – copies on file for all staff
- Training records – on file
- Water quality test results
 - Daily results posted
 - Records on file
- Rescue and/or incident reports on file
- AED inspection checklist – up-to-date
- Emergency oxygen system checklist – up-to-date

Aquatic Attractions:
- Rides and slides – inspected and test run complete
- Rafts, tubes and/or sleds – properly inflated and handles secure
- Landing areas free of rough surfaces and debris
- Water level and flow appropriate for attraction

Waterfronts:
- Shoreline is clean and free of sharp objects
- Bottom conditions are free from hazards
- Water conditions are safe for swimming
- Piers or docks are anchored, stable, and free from trip or injury hazards
- Lifeguard stands – surrounding area clear of objects
Safety checks are conducted before the facility is opened, during daily operations and at closing. Checks conducted before the facility is opened may include a physical inspection of all features, such as a test ride of all attractions. If you find an unsafe condition, you should correct the condition before the facility opens, if possible. If you cannot correct the problem, you should inform a supervisor immediately. If the condition is serious, the supervisor or facility manager may close or delay the opening of the facility, attraction or area until the condition is corrected. Signs, ropes or cones can keep patrons away from an area of the facility not open to the public (Figure 2-5). Inform other lifeguards about the hazard so that they can direct patrons away from the area. You also should record incidents in the daily log or on the appropriate form or report.

RIP CURRENTS

This course is not intended to prepare lifeguards to work at surf waterfront environments; however, it is important for all lifeguards to understand the dangers of rip currents and to help educate others about these dangers.

A rip current is a strong channel of water that flows offshore beginning near the shore and often extending well beyond the breaking waves. Rips currents are often associated with underwater features, such as sandbars, that may cause a channel in the bottom of a body of water, allowing water to escape from the near shore through a narrow channel. They also commonly occur near physical structures, such as piers, groins and natural outcroppings. Rip currents can create fast moving currents that may exceed 8 feet per second—this makes it extremely difficult for even a strong swimmer to swim against.

According to the National Weather Service, common indicators of a rip current include:

- A channel of churning, choppy water.
- An area having a noticeable difference in water color.
- A line of foam, seaweed or debris moving steadily away from shore.
- A break in the incoming wave pattern.

Although these are good indicators, they are not always present. Consequently, it is not always possible even for an experienced lifeguard to spot a rip current. Rip currents can occur in any surf or weather condition.

The United States Lifesaving Association (USLA) estimates that each year more than 100 people...
Specific Areas to Inspect for Safety

The facility’s safety checklist is a guide for performing a safety check. The purpose is to verify that equipment has been tested, is working properly and is ready for use and that the facility is clean and safe for patrons. Your facility should have a checklist specific to your facility. General areas and equipment to inspect include:

- Rescue equipment (hip pack contents, rescue tubes, backboards and first aid supplies).
- Communication equipment.
- Pool decks or waterfront shorelines.
- Pools, waterfront swimming areas or waterpark attractions.
- Locker rooms (dressing areas, shower areas and restrooms).
- Equipment and structures (ladders, diving boards and starting blocks).
- Recreational equipment and play structures.

Drown in rip currents. Rip currents are believed to account for more than 80 percent of rescues performed by surf lifeguards. This makes rip currents one of nature’s most deadly natural forces. Many beaches and waterfront areas use color-coded flags to indicate the presence of hazardous water conditions and rip currents. Any time a red or double red flag is visible, stay out of the water; use extreme caution when there is a yellow flag.

If caught in a rip current, do not panic. Never attempt to swim against the current—fighting the current will cause you to become exhausted and possibly drown. Allow the current to take you away from shore. Once the current weakens, swim parallel to the beach then back to shore at an angle. Try to swim in the direction of least resistance to the current. If you are too exhausted to swim to shore, signal by calling and waving for help.

If you are lifeguarding at a waterfront area where there is the possibility of rip currents, it is critical to receive specialized training in the specific conditions and hazards that exist in your area and to learn how to identify rip currents and to help someone who is caught in them. For more information on rip currents, visit ripcurrents.noaa.gov and usla.org.
Inspecting Aquatic Attractions and Features

Facilities should follow the manufacturer’s guidelines for installation, safe inspection, maintenance and use of its various attractions and features (Figure 2-6). Your employer should provide you with a specific set of guidelines and training if you are responsible for these inspections. In some cases, maintenance personnel, rather than lifeguards, will be responsible for inspections. Even if the attraction or feature has been inspected already, stay alert for any problems that may develop, such as loose or rusted bolts; cracks; broken or missing pieces; frayed, loose or mildewed safety nets; unusual noises; and an area with increased frequency of injury to patrons.

Hazards at Waterfront Facilities

You should be aware of the specific potential hazards presented by some waterfront facilities. These include underwater hazards, physical structures and changing water conditions.

Dangerous conditions may develop with changing winds, tides and weather. On some days, the water may be totally calm and flat. On other days, there may be large waves. Checking for potentially hazardous conditions specific to your facility should be covered during your orientation. If they are not, ask your facility management to discuss procedures for any situation for which you do not feel adequately prepared.

Underwater Hazards

Common underwater hazards may change throughout the day and include:

- Holes in the swimming area and sudden drop-offs.
- Submerged objects, such as rocks, tree stumps and underwater plants (Figure 2-7).
- Bottom conditions (sand, rock, silt, weeds and mud).
- Slope of the bottom and water depth.
- Shells, barnacles and marine life.
- Broken glass or other sharp objects.

You should check for and, if possible, remove underwater hazards. If hazards cannot be removed, swimming areas should be re-positioned away from them. Alternatively, the shape and size of swimming areas may need to be changed to avoid underwater hazards. Floating buoys can be used to mark underwater hazards to warn patrons of their danger.

Physical Structures

Piers and docks in the water often are used for different activities (Figure 2-8, A–D). The following precautions should be taken with these structures:
Ensure the floating piers, docks and rafts are anchored securely.

- Adjust attachment points between floating sections to minimize hazards.
- Be aware of and take steps to eliminate blind spots (obstructed views) caused by structures.
- Ensure that patrons dive only in designated areas. Check the water depth daily. Be aware of bottom and tidal changes before allowing head-first entries.
- Prohibit swimming in fishing areas around piers or docks or adjacent to boat activity.

Changing Water Conditions

Many factors can influence water conditions, which in turn can affect patron safety. These factors include:

- Water depth and currents. Changes in the water level may lead to increased currents that make standing difficult and could sweep swimmers beyond area boundaries. Examples include:
 - A dam that releases water, causing the water depth above the dam to drop and the river depth below the dam to rise.
 - Heavy rainfall that makes a lake or river rise, or a long, dry period that makes it too shallow for diving.
 - Tidal changes.
WATER QUALITY

The quality of water in spas and swimming pools constantly changes. It is affected by many factors, including the concentration of disinfectant in the water; the water’s pH level, chemical balance and saturation; air temperature; sunlight; and contaminants from bathers and the environment. All of these factors are important not only for a safe swimming environment but also to ensure crystal-clear water clarity.

Additional training is needed, and a certification in pool operations often is required, to learn how and when to make chemical adjustments to the pool water. If you work at a swimming pool or waterpark, your responsibilities probably will include monitoring the water to make sure that it is safe, clean and clear. You may be asked to assist by periodically testing the water’s chlorine or bromine and pH levels. You should receive training on how to properly test the pool water chemistry if this is included in your job responsibilities.

Disinfectant and pH Levels

Chlorine is one of the most common chemicals used to disinfect pools and spas. When dissolved in pool or hot tub water, chlorine produces a chemical called hypochlorous acid, also known as free chlorine. Free chlorine disinfects and sanitizes the water by killing germs and contaminants. To work most effectively, the free chlorine-to-water ratio should be 2 to 4 parts per million (ppm). This concentration of free chlorine, called a residual, should be maintained at all times throughout the water.

Free chlorine is colorless and odorless. However, it reacts with certain contaminants, such as human waste, to create combined chlorines, which are more commonly known as chloramines. Chloramines cause the chlorine-like smell found in indoor pools. Chloramines also can irritate the skin and mucous membranes.

The pH of the pool and hot tub water must be maintained at the appropriate level for free chlorine to be effective and for bathers to be comfortable. As the pH level goes down, free chlorine works better as a disinfectant. However, when the pH drops below 7.2, the water may irritate eyes and skin and corrode pool surfaces and equipment. Human tears have a pH of about 7.5; therefore, the ideal pH in pool and hot tub water is 7.4 to 7.6.

Bromine is another chemical commonly used to kill germs and contaminants in pool and hot tub water. It often is used in hot tubs instead of chlorine because it is more stable in hot conditions.

- Seiche, which is a standing wave of water that oscillates in large lakes usually created by strong winds and/or large barometric pressure gradients.
- Sandbars that can move and shift from season to season or from heavy rain that produces strong currents. These changes in the waterfront floor can create unexpected drops or new shallow-water features.
- Water quality. Insufficient flow may lead to stagnant water and compromise water quality.
- Debris or cloudiness in the water.
temperatures and does not burn away as quickly. It also does not leave a chemical odor in the water.

Testing and Adjusting

A supervisor, or another staff member trained and certified in pool operations, typically monitors and adjusts chemical levels throughout the day. However, you may be trained to test the chlorine or bromine and pH levels of the water. The water quality will need to be tested and the results recorded at periodic intervals throughout the day. Your facility should have a test kit available that measures free chlorine or bromine and pH levels. Some measure other water-balance levels as well. N,N-diethyl-p-phenylenediamine (DPD) is the most common test chemical used to test for free chlorine or bromine. DPD reacts with chlorine and turns the water test sample shades of light to dark pink. Phenol red is a dye used to test the water’s pH. Its color changes from yellow to orange to red based on the pH level. The water test result color is compared with the colors on the test kit.

Your facility will have guidelines for the minimum, maximum and ideal ranges for chlorine or bromine and pH levels for safe swimming. Alert the appropriate staff member immediately if the water test results are not within the proper ranges for safe swimming at your facility. Adjustments may need to be made as soon as possible or the pool or hot tub may need to be temporarily closed until the chemical ranges are correct for safe swimming.

Waterfront Considerations

(Source: http://water.epa.gov/type/oceb/beaches Accessed September 6, 2011)

Water quality is also important at natural bodies of water. Swimming in unsafe water may result in minor illnesses, such as sore throats or diarrhea or more serious illnesses, such as meningitis, encephalitis or severe gastroenteritis. Children, the elderly and people with weakened immune systems have a greater chance of getting sick when they come in contact with contaminated water. The quality of natural bodies of water can be impacted by pollutants, such as runoff from animal waste, fertilizer, pesticides, trash and boating wastes and especially storm water runoff during and after heavy periods of rain. The Environmental Protection Agency recommends that state and local officials monitor water quality and issue an advisory or closure when beaches are unsafe for swimming.

- Water temperature, which usually is colder early in the summer and after rain. Although surface water may be warm and comfortable, water at a depth of several feet can be much colder. This condition, called a *thermocline*, can cause *hypothermia* (low body temperature).

When dealing with changing water conditions:

- Warn patrons of hazards by using signs, buoys and safety announcements.
- Check for objects that may have washed into the area.
- Check for changes in bottom conditions, water depth and water quality.
RECREATIONAL WATER ILLNESSES

Illnesses that are spread by swallowing, breathing or contacting contaminated water are called recreational water illnesses (RWIs). Typical RWIs include earaches, rashes and diarrhea. RWIs generally are not severe, but in rare cases they can result in serious outcomes, including pneumonia, neurological damage and even death.

Gastroenteritis, a stomach ailment that causes diarrhea, nausea, vomiting and abdominal pain, is one of most commonly documented RWIs. It occurs when feces are released into the water and swallowed by other swimmers before having been killed by chlorine or another disinfectant.

Cryptosporidium is the parasite that causes most gastroenteritis outbreaks. Crypto can remain infectious, even when exposed to disinfectant levels for several days; therefore, people suffering from diarrhea should not enter the water. Those diagnosed with cryptosporidiosis should not enter recreational water for 2 weeks after symptoms have ceased.

Fecal Incident Response Recommendations

During orientation or in-service training, your facility should provide training on how to respond to accidental fecal releases (AFRs). If an AFR occurs, you should direct all patrons to leave all of the pools that use the same filtration system. Remove as much of the fecal material as possible with a scoop or net, trying not to break formed stool apart. Dispose of the feces using the sanitary procedures. Do not vacuum the feces. Clean and disinfect the scoop and net and then place them in the pool during the following disinfection procedures.

Formed stool
- Continue to operate the filtration system.
- Adjust the pH to below 7.5.
- Raise the free chlorine level to at least 2 ppm.
- Maintain those levels for 25 minutes before reopening the pool.

Diarrheal discharge
- Continue to operate the circulation system.
- Adjust the pH to below 7.5.
- Raise the free chlorine level to at least 20 ppm.
- Maintain those levels for 13 hours.
- Backwash the filter.
- Return the chlorine level to normal levels before re-opening the pool.

Vomit in Pool Water

Patrons are unlikely to contract RWIs by swallowing, breathing or contacting pool water contaminated by vomit or blood. The vomit that a person produces after swallowing too much water probably is not infectious; however, if a person vomits and it contains any solid matter or food particles, you should respond the same way as you would to a formed stool incident.

To learn more about prevention practices, healthy swimming and recreational water topics, and to download free outbreak response toolkits and publications, visit CDCs website at cdc.gov/healthywater/swimming. You can learn even more by enrolling in a pool operator course.
CHAPTER 2 FACILITY SAFETY

- Alert patrons to cold water and watch for signs of hypothermia in patrons.
- Check and document scheduled high and low tides in the daily log each morning before opening, and plan for changes in water depth.

WEATHER CONDITIONS

Weather affects the safety of swimmers both outdoors and indoors. You should be aware of the weather conditions in your area and know how to act when severe weather occurs.

The National Oceanic and Atmospheric Administration (NOAA) Weather Radio All Hazards is a good source of information about potentially hazardous weather. This nationwide radio network provides detailed weather information 24 hours a day to most areas. A special radio receiver is needed to receive the signal and can be set to sound an alarm when a warning is issued for a specific area. These radios have battery back-up in case of power failure. Local up-to-date forecasts and weather warnings also are available from Internet sites, such as the National Weather Service at www.nws.noaa.gov. Local radio stations, television channels and cable services also provide forecasts and emergency weather warnings.

Always follow your facility’s EAP for severe weather conditions.

Lightning and Thunderstorms

In most parts of the United States, lightning and thunderstorms happen more often in the summer. Follow the facility’s procedures for clearing patrons from the water before an impending storm. Patron or employee safety never should be put at risk. If a storm or other bad weather is predicted, stay alert for signs of the coming storm, such as thunder and lightning or high winds.

If thunder or lightning occur:

- Clear everyone from the water at the first sound of thunder or first sight of lightning. If you are in an elevated station, get down immediately. Move everyone to a safe area free from contact with water, plumbing or electrical circuits. For outdoor facilities, move everyone inside, if possible. Large buildings are safer than smaller or open structures, such as picnic shelters or gazebos.
- Keep patrons and staff out of showers and locker rooms during a thunderstorm as water and metal can conduct electricity.
- Do not use a telephone connected to a landline except in an emergency.
- Keep everyone away from windows and metal objects (e.g., doorframes, lockers).
- Watch for more storms and monitor weather reports on a radio or TV broadcast, weather radio or website.

Lightning

Lightning is the result of the build-up and discharge of electrical energy, and this rapid heating of the air produces the shock wave that results in thunder. 25 million cloud-to-ground lightning strikes occur in the United States each year. Lightning often strikes as far as 10 to 15 miles away from any rainfall with each spark of lightning reaching over 5 miles in length and temperatures of approximately 50,000°F. Even if the sky looks blue and clear, be cautious. One ground lightning strike can contain 100 million volts of electricity. The National Lightning Safety Institute recommends waiting 30 minutes after the last lightning sighting or sound of thunder before resuming activities.

If caught outside in a thunderstorm and there is not enough time to reach a safe building:

- Keep away from tall trees standing alone and any tall structures.
- Keep away from water and metal objects, such as metal fences, tanks, rails and pipes.
- Keep as low to the ground as possible: squat or crouch with the knees drawn up, both feet together and hands off the ground.
- Avoid lying flat on the ground; minimize ground contact.

Heavy Rain and Hail

Heavy rain and hail can be dangerous. Rain can make it difficult to see the bottom of the pool or beneath the surface. If you cannot see the bottom of the pool (Figure 2-9), clear the pool of all patrons. In addition, hail can cause serious physical injury. If it is hailing, clear patrons from the water and direct them to shelter.

Tornadoes

If the aquatic facility’s locale is prone to tornadoes, facility staff should monitor weather forecasts. A *tornado watch* means that tornadoes are possible. Some facilities may decide to close once a watch is issued and before the arrival of wind, rain and lightning, which also may occur when tornado formation is likely. A *tornado warning* means that a tornado has been sighted or indicated on radar and is occurring or imminent in the warning area. Some communities activate sirens during a tornado warning. Everyone should take shelter immediately.

If a tornado warning is issued:

- Clear the water and surrounding area.
- Move everyone to the location specified in the facility’s EAP, such as a basement or an inside area on the lowest level of a building.
- Keep everyone away from windows, doors and outside walls.
- Have everyone lie flat in a ditch or on a low section of ground if adequate shelter is unavailable at or near the facility.

If a tornado siren warning is heard, keep patrons in the safe location. Continue listening to local radio or television stations or a NOAA Weather Radio for updated instructions from the authorities.

High Wind

High wind may cause waves or turbulence that makes it hard to see patrons in the water. Wind also increases the risk of hypothermia, especially for small children and the elderly. Safety guidelines for high wind include:

- Clearing the pool or waterfront if visibility is impaired by waves or increased turbidity.
■ Moving all patrons and staff indoors.
■ Securing all facility equipment that could be blown around and become dangerous, but only if it is possible and safe to do so.

Fog

In some areas, fog can occur at any time of the day or night with changing weather conditions. If fog limits visibility, your facility may need to close.

Weather Conditions and Indoor Facilities

Indoor facilities are safe from most weather problems but still may be affected. Severe weather can cause a power failure; therefore, the facility should have some type of portable or emergency lighting. In the event of a power failure, you should clear the pool because circulation and filtration of pool water will not be possible. If weather conditions cause safety concerns, you also should clear the deck. Follow the facility’s EAP for severe weather conditions.

RULES AND REGULATIONS

Every aquatic facility establishes its own set of rules and regulations, some of which are required by the state or local health department, whereas others are determined by the facility management. This course concentrates on common rules aimed at keeping patrons safer and preventing injuries; however, you should be familiar with and enforce all rules at your facility.

Common Rules

Every facility should post its rules and regulations for patron behavior in plain view of all patrons and staff. Rules do not keep patrons from having fun. Rules exist for everyone’s health and safety. Posted rules help patrons to enjoy their experience without endangering themselves or others. Facilities that attract numerous international guests or those that are located in multicultural communities also may post rules in other languages or use international signs or symbols.

Common rules posted at aquatic facilities may include:

■ Swim only when a lifeguard is on duty.
■ Swim diapers are required for small children or people with incontinence.
■ No swimming with open or infected wounds.
■ Obey lifeguard instructions at all times.
■ No running, pushing or rough play.
■ No hyperventilating before swimming underwater or breath-holding contests.
■ No sitting or playing near or with drains or suction fittings.
■ Dive only in designated areas (Figure 2-10).
- No glass containers in the pool area and locker rooms.
- No alcoholic beverages or drug use allowed.

Waterfront Rules

Waterfront facilities often adopt additional rules that are specific to the waterfront environment. These may include:

- No playing or swimming under piers, rafts, platforms or play structures.
- No boats, sailboards, surfboards or personal water craft in swimming areas.
- No running or diving head-first into shallow water.
- No fishing near swimming areas.
- No umbrellas at the waterline (umbrellas present a surveillance obstruction).
- No swimming in unauthorized areas.

Waterpark Rules

At waterparks, rules and regulations should be posted, but they also may be recorded and played over a public address system. Rules may vary based on the type of attractions available. For example, U.S. Coast Guard-approved life jackets may be required on certain attractions but not allowed on others.

Waterparks should have signage at every attraction stating the depth of the water, height or age requirements and how to safely use the attraction. This is to prevent patrons from finding themselves in water that is deeper or shallower than they expected. For example, some pools at the end of a slide are shallow so that patrons can stand up, but others are very deep. Without signage to warn them, patrons may expect a shallow catch pool and be surprised to find themselves in deep water.

Additional rules for each attraction typically cover:

- The minimum or maximum number of people allowed on an attraction or a tube at a time.
- The maximum height or age requirements in areas designated for small children.
- The minimum height or weight requirements for patrons using an attraction (Figure 2-11).

Common rules for winding rivers, such as:

- Enter and exit the winding river only at designated places.
- No jumping or diving into the water.
- No people on shoulders.
- Stay in tubes at all times if tubes are used.
- No walking or swimming in the winding river if tubes are used.
- Only one properly fitted life jacket per patron.
- No stacking of tubes or life jackets.
- No forming chains of tubes or life jackets.
- Only one patron allowed per tube, except for an adult holding a small child. The child must be wearing a U.S. Coast Guard-approved life jacket in case the adult tips over.
Common rules for waterslides, such as:
- Enter, ride and exit the slide feet-first.
- No stopping in the slide, and no running, standing, kneeling, rotating or spinning on the slides. Keep hands and feet inside the slide.
- No metal objects, locker keys, jewelry, metal snaps/zippers, eyewear or watches, including metal rivets, buttons or fasteners on swimsuits or shorts.
- No aqua socks or aqua shoes, eyeglasses, sunglasses or goggles.

Rules for Facility Equipment and Structures

Other rules for specific equipment and structures depend on the facility and may include:
- One person at a time on a ladder or attraction.
- Do not sit or hang on lifelines or lane lines.
- Do not climb on lifeguard stands or towers.
- Starting blocks may be used only by swim team members in scheduled practices, competitions and instruction when supervised by a certified coach or instructor.

Diving-Area Rules

Rules for diving boards and dive towers should be posted in the diving area. The rules may include:
- Patrons must demonstrate their swimming ability before entering deep water.
- Only one person on the diving board at a time and only one person on the ladder at a time.
- Look before diving or jumping to make sure the diving area is clear.
Only one bounce allowed on the diving board.
Dive or jump forward, straight out from the diving board.
Swim immediately to the closest ladder or wall.

Rules for Spas, Hot Tubs and Therapy Pools
Spas, hot tubs and therapy pools are popular, but their hazards include drowning, hyperthermia (high body temperature) and disease transmission. Rules common to these areas include:

- Use only when a lifeguard is present.
- Shower with soap and water before entering the water.
- People with heart disease, diabetes, high or low blood pressure, seizures, epilepsy or other medical conditions are cautioned against using a spa or hot tub.
- Pregnant women and young children should seek their health care provider’s approval before using a spa or hot tub.
- No unsupervised use by children.
- Do not use the spa or hot tub while under the influence of alcohol or other drugs.
- No diving, jumping or rough play in the spa or hot tub.
- Do not allow anyone to sit or play near or with the drain or suction fittings.
- Secure or remove any loose or dangling items, including hair, swimwear and jewelry.
- Limit time in the spa to 10 minutes. Patrons then may shower, cool down and return again briefly. Prolonged use may result in nausea, dizziness, fainting or hyperthermia.
- Remove swim caps before entering the spa or hot tub.

MANAGEMENT AND SAFETY
As a lifeguard, your job is to follow and enforce your facility’s rules and regulations. The job of your facility’s management is to ensure that the facility is in compliance with local, state and federal regulations and to make sure that you are enforcing the rules correctly. Management is responsible for:

- Creating, reviewing and revising a facility’s policies and procedures, rules and regulations and EAPs as needed.
- Addressing unsafe conditions.
- Complying with federal, state and local laws and regulations for facility operations and employment.
- Maintaining records on the facility and its employees.
- Assisting after an emergency.

Policies, Regulations and Emergency Action Plans
Facility management is responsible for ensuring that policies, rules and procedures, and emergency action plans are in place. Management also is responsible for reviewing and revising these plans as necessary to address any changes that may have occurred, such as new programming, new features or attractions or emerging codes and industry standards.
Addressing Unsafe Conditions

Lifeguards work with management to address unsafe conditions at a facility. Management tells lifeguards what to check during safety checks and relies on them to find and report dangers. When an unsafe condition is found and reported, management is responsible for correcting the condition. You should always report unsafe conditions to your supervisor. In some instances you may be asked to take action to limit use of an unsafe area or to help correct the unsafe condition, such as by sweeping up broken glass or by removing a piece of equipment from use.

Complying with Regulations

Government regulations protect patrons and employees. The facility and staff must comply with all regulations. Federal, state and local regulations affect the operation of aquatic facilities in many ways, such as lifeguard certification requirements, facility design and safety features, pool capacities, staff training requirements and lifeguard competencies, ratio of lifeguards to patrons, water sanitation procedures, first aid equipment and supplies, lifeguarding equipment and diving depths.

Regulations are specific to individual areas. You should be familiar with those that affect your facility. Facility management should provide this information during orientation or in-service training.

The following sections describe some federal regulations that may affect you.

Age Limitations for Employment

Federal and state departments of labor set conditions on the number of hours and the types of tasks that employees younger than 18 years are allowed to perform. The requirements typically are more stringent for 15 year olds than for those 16 and 17 years of age. A facility’s policy and procedures manual should cover how these regulations affect your duties.

Hazard Communication Standard

Federal regulations protect people from chemical hazards in and around a facility. For example, the Hazard Communication Standard is designed to prevent injury and illness caused by exposure to hazardous chemicals in the workplace.

Employees must be trained about the chemicals stored and used in the workplace for jobs that involve handling such items. Each chemical has an information sheet called a Material Safety Data Sheet (MSDS), and the information for each hazardous chemical must be easy to find and use. Each MSDS includes procedures for handling each substance and provides information about the dangers of exposure as well as first aid and medical follow-up if exposure occurs. Be sure to learn about all hazardous materials are at your workplace and know where to find and access your facility’s MSDSs (Figure 2-12). Employees have a right to know:

Figure 2-12

Every chemical stored at a facility should have a Material Safety Data Sheet.
- Which hazardous chemicals are in the facility.
- Where those chemicals are stored in the facility.
- The specific dangers of those chemicals.
- How to identify chemical hazards in the facility.
- How to protect themselves and others from being exposed to hazardous chemicals.
- What to do if they or others are exposed to such hazards.

Hazardous chemicals must be handled properly and with care, and stored properly, as specified in the Hazard Communication Standard. Unauthorized personnel should be kept away from chemical storage areas.

Bloodborne Pathogens Standard

The federal Occupational Safety and Health Administration developed the Bloodborne Pathogens Standard to reduce the risk of disease transmission while on the job. This standard helps to protect employees from contact with body fluids that may contain disease-causing bacteria and viruses, called *bloodborne pathogens*. Your employer must provide an exposure control plan to help protect employees from being exposed to bloodborne pathogens and let employees know what to do if an exposure occurs. Additional information is provided in Chapter 7, Before Providing Care and Victim Assessment.

WRAP-UP

Your top priority as a lifeguard is helping keep patrons safe and free from injury so that they can safely enjoy aquatic activities. Lifeguards prevent injuries by enforcing the safety rules. Lifeguards also prevent injuries by conducting safety inspections of the facility, water, equipment and attractions. Lifeguards also need to recognize and respond to the changing water conditions and weather conditions that can occur. Together with management and your fellow lifeguards, your job is to set the stage for this safe experience by helping to create and maintain a safe aquatic facility.
Surveillance and Recognition

Your primary responsibility as a lifeguard is to help ensure patron safety and protect lives. The main tool used to accomplish this is patron surveillance—keeping a close watch over the people in the facility and intervening when necessary. You will spend most of your time on patron surveillance. To do this effectively, you must be alert and attentive—and ready to react—at all times as you continuously supervise patrons.
AN OVERVIEW OF THE PROCESS OF DROWNING

Drowning is a continuum of events that begins when a victim’s airway becomes submerged under the surface of the water (Figure 3-1). The process can be stopped, but if it is not, it will end in death. The process of drowning begins when water enters the victim’s airway. This causes involuntary breath holding and then laryngospasm (a sudden closure of the larynx or windpipe). When this occurs, air cannot reach the lungs. During this time, the victim is unable to breathe but may swallow large quantities of water into the stomach. As oxygen levels are reduced, the laryngospasm begins to subside and the victim may gasp for air but instead inhales water into the lungs.

Due to inadequate oxygen to body tissues, cardiac arrest may occur. This can happen in as little as 3 minutes after submerging. Brain damage or death can occur in as little as 4 to 6 minutes. The sooner the drowning process is stopped by getting the victim’s airway out of the water, opening the airway and providing resuscitation (ventilations or CPR), the better the chances are for survival without permanent brain damage.

No two drownings are alike—there are many intervening variables that can affect the outcome, including any underlying medical conditions of the victim and the time until advanced medical care intervenes. However, in general, giving ventilations often will resuscitate the victim if they are given within 1½ to 2 minutes of submerging.

When you are providing care, an unconscious victim may have isolated or infrequent gasping in the absence of other breathing, called agonal gasps. Agonal gasps can occur even after the heart has stopped beating. Normal, effective breathing is regular, quiet and effortless. Agonal gasps are not breathing. Care for the victim as though he or she is not breathing at all by giving ventilations or providing CPR.

Lifeguards must understand that only a few minutes can make the difference between life and death. To give a victim the greatest the chance of survival and a normal outcome, you must recognize when a person needs help or is in danger of drowning and you must act immediately. If there is any question whether a person in the water is beginning to drown or merely playing games, it is essential that you intervene, and if necessary, remove the person from the water immediately and provide care.

EFFECTIVE SURVEILLANCE

With effective surveillance, you can recognize behaviors or situations that might lead to life-threatening emergencies, such as drownings or injuries to the head, neck or spine, and then act quickly to modify the behavior or control the situation. Effective surveillance has several elements:

- Recognition of dangerous behaviors
- Victim recognition
Recognition of Dangerous Behaviors

A focus of preventive lifeguarding is to intervene quickly to stop potentially dangerous behaviors that could result in an emergency. This may include redirecting a child to shallower water, stopping a group of teens from having breath-holding contests or stopping swimmers from hyperventilating (breathing rapidly and deeply) and swimming underwater for extended periods. Swimmers and nonswimmers, regardless of age, can become victims quickly because of dangerous behaviors or other situations (Figure 3-2, A–E). Examples include:

- A weak swimmer or nonswimmer who is:
 - Bobbing in or near water over his or her head.
 - Crawling hand-over-hand along a pool wall.
 - Beyond arm’s reach of a supervising adult, even if wearing a floatation aid.

A small child crawling hand-over-hand toward deep water.

A toddler left unattended.

A child wearing an improperly fitting life jacket.

A child bobbing in water over her head.

A victim experiencing a medical emergency.
- Clinging to something or struggling to grab something to stay afloat.
- Wearing a life jacket improperly.

- A person who is:
 - Breath-holding or swimming underwater for an extended period after hyperventilating.
 - Participating in a high-risk/high-impact activity, such as diving.
 - Experiencing a medical emergency, such as a sudden illness.

Victim Recognition

Another element of effective surveillance is being able to recognize when someone is in trouble in the water. It is important to understand the behaviors that a victim shows when in distress or drowning. Someone in trouble may struggle at the surface for just a short time or may quickly disappear beneath the surface without any signs of distress. Others may be submerged already when the process of drowning begins, such as the person who has jumped or slipped into water over his or her head and is struggling to reach the surface.

A swimmer may be in distress or actively struggling to survive. Others may be passive and therefore unable to help themselves, showing little or no movement. Understanding these behaviors enables lifeguards to recognize quickly when someone needs help. Lifeguards should be able to recognize and respond to a drowning victim within 30 seconds.

Swimmers in Distress

A swimmer can become distressed for several reasons, such as exhaustion, cramp or sudden illness. Quick recognition is key to preventing the distressed swimmer from becoming a drowning victim. A distressed swimmer makes little or no forward progress and may be unable to reach safety without assistance. Distressed swimmers may be:

- Able to keep their face out of the water.
- Able to call for help.
- Able to wave for help.
- Horizontal, vertical or diagonal, depending on what they use to support themselves.
- Floating, sculling or treading water.

The distressed swimmer generally is able to reach for a rescue device, such as a rescue tube (Figure 3-3). If a safety line or other floating object is nearby, a distressed swimmer may grab and cling to it for support. As conditions continue to affect the distressed swimmer, such as fatigue, cold or sudden illness, he or she becomes less able to support him or herself in the water (Figure 3-4). As this occurs, his or her mouth moves closer
to the surface of the water, and anxiety increases. If a distressed swimmer is not rescued, he or she may become a drowning victim; therefore, you need to immediately initiate a rescue.

Drowning Victim—Active

A drowning victim who is struggling to remain at the surface of the water has distinctive arm and body positions. These are efforts to try to keep the mouth above the water’s surface in order to breathe (Figure 3-5). This universal behavior is called the *instinctive drowning response*. Once it is recognized that a victim is drowning, the lifeguard must perform a swift or immediate rescue.

Some victims cycle through these behaviors quickly and might submerge within seconds, whereas others are able to remain near the surface of the water for a short time. A drowning victim who is struggling:

- Cannot call out for help because his or her efforts are focused on getting a breath.
- Works to keep the face above water in an effort to breathe. A young child may be in a horizontal face-down position during the struggle because he or she is unable to lift the face out of the water.
- Has extended the arms to the side or front, pressing down for support.
- Is positioned vertically in the water with no supporting kick. A young child may tip into a horizontal face-down position.
- Might continue to struggle underwater once submerged.
- Eventually will lose consciousness and stop moving.

Drowning victims who are struggling to breathe may not always look the same. For some, the mouth sinks below the surface and reappears, sometimes repeatedly. While the mouth is below the surface, the drowning victim attempts to keep the mouth closed to avoid swallowing water. When above the surface, the drowning victim quickly exhales and then tries to inhale before the mouth goes below the surface again. While the victim is gasping for air, he or she also might take water into the mouth (Figure 3-6). For a young child who is in a horizontal face-down position, he or she is not able to keep the mouth above the surface of the water at all.

Often, a drowning victim at or near the surface is unable to call out for help. He or she can take in only enough air to breathe, so no air is left to call out. A drowning in progress often is silent.

A drowning victim does not make any forward progress in the water. A young child may appear to be doing a “doggy paddle” but has no forward progress; all efforts
are devoted to getting air. The victim might be able to stay at the surface for only 20 to 60 seconds, if at all. He or she may continue to struggle underwater but eventually will lose consciousness and stop moving.

A victim may slip into water over his or her head, incur an injury, or experience a sudden illness and struggle underwater to reach the surface. If unable to swim or make progress, he or she will be unable to reach the surface. This drowning victim may appear to be a person who is playing or floating underwater. It may be easier to recognize a swimmer in distress or a victim struggling on the surface than to recognize a victim who has submerged already or is submerging.

Never assume that anyone exhibiting these behaviors is playing or faking; it is essential that you intervene, and if necessary, remove the person from the water immediately and provide care.

Drowning Victim—Passive

Some drowning victims do not struggle. They suddenly slip under water due to a medical condition or another cause, such as:

- A heart attack or stroke.
- A seizure.
- A head injury.
- A heat-related illness.
- Hypothermia (below-normal body temperature).
- Hyperventilation and prolonged underwater breath-holding activities.
- Use of alcohol and other drugs.

These drowning victims:

- Might float face-down at or near the surface or might sink to the bottom (Figure 3-7).
- May be limp or have slight convulsive-type movements.
- Have no defined arm or leg action, no locomotion and no breathing.
- May appear to be floating, if at the surface of the water.
- May be face-down, on one side or face-up, if at the bottom (Figure 3-8).

Anyone who is exhibiting one or more of these signals for 30 seconds should be considered a drowning victim and responded to immediately. It can be difficult to clearly see a victim who is underwater or at the bottom of a pool because of glare, reflections, or water movement from the wind or other swimmers. The victim may appear to look like a smudge, an object like a towel, or a shadow. Do not expect to see a clear outline of a person on the bottom. At waterfronts, submerged victims may not be visible, depending on the water depth.
Voluntary hyperventilation (rapid, deep breathing) is a dangerous technique used by some swimmers to try to swim long distances underwater or to hold their breath for an extended period while submerged in one place. They mistakenly think that by taking a series of deep breaths in rapid succession and forcefully exhaling that they can increase the amount of oxygen they breathe, allowing them to hold their breath longer underwater. This is not true. Hyperventilation does not increase the amount of oxygen or allow a swimmer to hold his or her breath longer; instead, it lowers the carbon dioxide level in the body. The practice is risky because the level of carbon dioxide in the blood is what signals a person to breathe. As the level of carbon dioxide increases, a person normally takes a breath. When a person hyperventilates and then swims underwater, the oxygen level in the blood can drop to a point where the swimmer passes out before the body knows it is time to breathe. Then, when the person finally does take a breath instinctively, water rushes in and the drowning process begins.

Do not allow swimmers to participate in contests, games or repetitive activities to see who can swim underwater the farthest or hold their breath underwater the longest. Hyperventilation, prolonged underwater swimming for distance and breath-holding for time are extremely dangerous. If you see these dangerous activities, you must intervene. Explain to patrons that they should only take a single inhalation before submerging when swimming and playing underwater. In addition, instructors must prevent these activities during instructional periods, such as swim lessons, lifeguard classes, SCUBA classes and competitive swimming.

Alcohol

The following are some ways that alcohol can affect a person in the water and lead to drowning or head, neck or spine injuries:

- Alcohol affects balance. Some people with alcohol in their body have drowned in shallow water when they lost their balance and were unable to stand up. “Ordinary” actions on steps, ladders, diving boards or play structures become hazardous for an intoxicated person.

- Alcohol affects judgment. A person might take unusual, uncharacteristic risks, such as diving into shallow water.

- Alcohol slows body movements. It can greatly reduce swimming skills, even those of an excellent swimmer.

- Alcohol impairs one’s ability to stay awake and respond appropriately to emergencies.

One of the biggest myths about alcohol is that an intoxicated person can sober up by going swimming. Splashing water on a person’s face or immersing a person in water will not reduce the amount of alcohol in the bloodstream or reduce the effects of alcohol.
or because of poor water clarity. If you see something on the bottom that should not be there, do not delay, go right away.

Specific Behaviors

When conducting surveillance, look for behavior that indicates a patron in need of immediate assistance. It is important to recognize the behaviors of

<table>
<thead>
<tr>
<th>Table 3-1: Behaviors of Distressed Swimmers and Drowning Victims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Position</td>
</tr>
<tr>
<td>Head Position</td>
</tr>
<tr>
<td>Appearance and, if visible, Facial Expressions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Breathing</td>
</tr>
<tr>
<td>Arm and Leg Action</td>
</tr>
<tr>
<td>Body Position</td>
</tr>
<tr>
<td>Locomotion</td>
</tr>
<tr>
<td>Sounds</td>
</tr>
<tr>
<td>Location</td>
</tr>
</tbody>
</table>
a drowning victim (Table 3-1). Notice:

- Breathing.
- Appearance or facial expression (if the face is visible to you).
- Arm and leg action.
- Head and body position.
- Body propulsion or locomotion (movement) through the water.

Understanding these behaviors helps you to quickly recognize when someone needs help. When you see some or all of these behaviors, react. Do not spend time second-guessing yourself, immediately initiate a rescue. Quick action can mean the difference between life and death for a distressed or drowning victim.

Effective Scanning

Knowing what to look for to determine if a victim is in trouble in the water is a first step, but you also need to know how to look. Scanning is a visual technique for watching patrons in the water (Figure 3-9). When scanning, you should not just passively watch patrons in the water. Effective scanning requires you to deliberately and actively observe swimmers’ behaviors and look for signals that someone in the water needs help. You must actively scan all patrons in the water, regardless of the type of activities taking place.

Guidelines for Effective Scanning

Drowning and injuries can happen in an instant, often silently. Scanning your entire area of responsibility quickly and thoroughly is important. You cannot prevent or save what you cannot see. When scanning:

- Scan all patrons in your assigned area of responsibility.
- Stay focused—do not let your attention drift.
- Scan the entire volume of water—the bottom, middle and surface.
- Move your head and eyes while scanning and look directly at each area rather than staring in a fixed direction. You may notice movement with your peripheral (side) vision, but to recognize that a person is in trouble, you must look directly at him or her.
- Scan from point to point thoroughly and repeatedly. Do not neglect any part of the assigned area, including any deck or beach areas and those areas under, around and directly in front of the lifeguard station.
- Focus on effective patron surveillance instead of the scanning pattern itself.
- Scan for signs of potential problems: arm and leg action, body position and movement through the water may indicate that a patron is a weak swimmer and is in trouble in the water.
- Scan crowded and high-risk areas carefully. Partially hidden arm movements might indicate that a victim is actively drowning.
- Pay close attention to nonswimmers or weak swimmers. Excitement or lack of knowledge may lead nonswimmers or weak swimmers to become unknowingly
careless. They might try things they would not otherwise do, or they might accidentally enter deep water.

- Maintain an active posture. Slouching, leaning back, sitting back with legs crossed, or resting your head in your hand may cause you to become too relaxed and lose focus.

- Adjust your body position or stand up to eliminate blind spots. Be aware of areas that are difficult to see. Areas might be blocked when patrons cluster together; or water movement, such as from fountains or bubbles, may distort the view underwater.

- Change your body position regularly to help stay alert. For example, switch between seated and standing positions while in an elevated station.

- While scanning, do not be distracted by people or activities outside of your area of responsibility. Keep focused on the assigned zone.

- Do not interrupt scanning an area if a patron asks a question or has a suggestion or concern. Acknowledge the patron and quickly explain that you cannot look at him or her while talking, but you are listening to the patron. Politely but briefly answer the patron’s question, suggestion or concern, or refer him or her to the head lifeguard, facility manager or another staff member.

Scanning Challenges

There are many challenges to scanning (Figure 3-10, A–D). You must be aware of the challenges and actively employ tactics to combat them. The lives of patrons
<table>
<thead>
<tr>
<th>Challenge</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotony</td>
<td>- Stay fully engaged in what you are seeing—do not let your attention drift.</td>
</tr>
<tr>
<td></td>
<td>- Change body position and posture periodically.</td>
</tr>
<tr>
<td></td>
<td>- Sit upright and slightly forward.</td>
</tr>
<tr>
<td></td>
<td>- Rotate stations.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>- Request additional lifeguard coverage.</td>
</tr>
<tr>
<td></td>
<td>- Keep hydrated, cool off and get out of the sun when on break.</td>
</tr>
<tr>
<td></td>
<td>- Exercise during one of your breaks.</td>
</tr>
<tr>
<td>Distractions</td>
<td>- Stay focused on patron surveillance.</td>
</tr>
<tr>
<td></td>
<td>- Do not daydream, have conversations with co-workers or patrons or watch events outside of your area.</td>
</tr>
<tr>
<td></td>
<td>- Keep patron activities safe and orderly. Signal for an additional lifeguard or supervisor if assistance is needed.</td>
</tr>
<tr>
<td>Blind spots</td>
<td>- Adjust your location or body position or stand up.</td>
</tr>
<tr>
<td></td>
<td>- Check all potential blind spots: under the stand, at play features or any part of the zone.</td>
</tr>
<tr>
<td>Glare (from the sun or overhead lights)</td>
<td>- Use polarized sunglasses.</td>
</tr>
<tr>
<td></td>
<td>- Change body position—stand up and look around and through glare spots.</td>
</tr>
<tr>
<td></td>
<td>- Reposition your lifeguard station with permission of your supervisor.</td>
</tr>
<tr>
<td>Water movement and surface distortion of the water</td>
<td>- Adjust your body position.</td>
</tr>
<tr>
<td></td>
<td>- Be aware of the normal appearance of the bottom of the pool; know the appearance of drains, colored tiles or painted depth markings.</td>
</tr>
<tr>
<td></td>
<td>- Scan the bottom carefully.</td>
</tr>
<tr>
<td>Murky water</td>
<td>- Adjust your location or body position.</td>
</tr>
<tr>
<td></td>
<td>- Stay alert for high-risk activities.</td>
</tr>
<tr>
<td></td>
<td>- Signal for additional assistance to get extra coverage for the area.</td>
</tr>
<tr>
<td>Heavy patron loads</td>
<td>- Stand up frequently.</td>
</tr>
<tr>
<td></td>
<td>- Signal for additional assistance to get extra coverage for your area.</td>
</tr>
<tr>
<td>Low patron loads</td>
<td>- Change body position and posture frequently.</td>
</tr>
<tr>
<td></td>
<td>- Change to a ground-level station, if appropriate.</td>
</tr>
<tr>
<td>High air temperature</td>
<td>- Use fans to cool the surrounding air in an indoor setting.</td>
</tr>
<tr>
<td></td>
<td>- Stay in the shade; use umbrellas.</td>
</tr>
<tr>
<td></td>
<td>- Cool off by getting wet during your break.</td>
</tr>
<tr>
<td></td>
<td>- Rotate more frequently.</td>
</tr>
<tr>
<td></td>
<td>- Stay in cooler areas during breaks.</td>
</tr>
<tr>
<td></td>
<td>- Stay hydrated by drinking plenty of water.</td>
</tr>
</tbody>
</table>
depend on it. Table 3-2 presents some scanning challenges that you may encounter and tactics to overcome them.

Zones of Surveillance Responsibility

Your lifeguard supervisor or facility manager will establish each lifeguard’s zone of surveillance responsibility—referred to as zones. These are the specific areas

THE RID FACTOR

If an active victim drowns while lifeguards are on duty, it is probably due to one or more of the following causes:

- Lifeguards fail to recognize the victim’s instinctive drowning response.
- Secondary duties intrude on lifeguards’ primary responsibility of patron surveillance.
- Lifeguards are distracted from surveillance.

This set of causes often is referred to as the “RID factor,” where the acronym, RID, stands for recognition, intrusion and distraction.

Recognition

Knowing how to recognize that a swimmer is in distress or a person is drowning is one of the most important lifeguarding skills. You must be able to distinguish such behavior from that of others who are swimming or playing safely in the water. You must recognize when someone needs to be rescued. You cannot expect the victim or others to call for help in an emergency.

With good surveillance and scanning techniques, you can recognize even a passive victim who has slipped underwater without a struggle, if the victim is in clear water.

Intrusion

Intrusion occurs when secondary duties, such as maintenance tasks, intrude on your primary responsibility of patron surveillance. Lifeguards often have to sweep the deck, empty trash cans, pick up towels, check locker rooms and perform other maintenance duties. While these duties might be part of the job, you should not perform them while conducting patron surveillance. Before you begin these duties, you must be sure that another lifeguard has taken over surveillance for your assigned area of responsibility.

Similarly, you cannot perform adequate surveillance duties while also coaching a swim team or teaching a swimming lesson. These additional responsibilities should be performed by a different lifeguard, coach or instructor, even if there are no other patrons in the water.

Distraction

Distractions also affect patron surveillance: for example, a lifeguard talking with other lifeguards or friends. A brief conversation might seem innocent, but during that time, you could miss the 20- to 60-second struggle of a young child at the water’s surface. The child could die because you were distracted. You should not engage in social conversation while are on duty.
of the water, deck, pier or shoreline that are your responsibility to scan from your lifeguard station (Figure 3-11).

When establishing coverage, supervisors or managers must ensure that:

- All areas of the water—from the bottom through to the surface—are covered and can be seen by a lifeguard.
- There is overlapping coverage when more than one lifeguard is performing surveillance.
- Lifeguards have unobstructed views of their zones from each station.
- The size and shape of each zone allow lifeguards to respond quickly, within 30 seconds, to victims in the water.

Supervisors or managers should post diagrams or charts showing the size, shape and boundaries of each zone. These can change throughout the day, depending on the following:

- Number of patrons
- Types of activities
- Variety of activities
- Time of day
- Environmental conditions, such as glare from the sun

To ensure that all areas of the pool are covered adequately, you might be assigned zone coverage, total coverage or emergency back-up coverage.

Zone Coverage

In zone coverage, the swimming area is divided into separate zones, with one zone for each lifeguard station (Figure 3-12, A–B). Zones can be designated by markers, such as ladders, lane lines, lifelines, buoys, or the shape of the pool. Zone coverage is effective for high-risk areas or activities, avoiding blind spots and reducing the number of patrons watched by each lifeguard. When zone coverage is being provided, each lifeguard needs to know the zone for each guarding position.

At a minimum, zones should overlap by several feet so that the boundaries between them have double coverage. This prevents any area from not being scanned. When zones overlap, it is important that each lifeguard react to an emergency; that is, you should not assume that the other lifeguard will notice a problem and react. However, if the...
position of the other lifeguard allows a significantly quicker rescue, your emergency action plan (EAP) should establish how lifeguards communicate as to who enters the water and who provides back-up coverage.

Total Coverage

When you are assigned total coverage, you will be the only lifeguard conducting patron surveillance while you are on duty. Some facilities, such as a small pool, always assign their lifeguards total coverage. Other facilities use total coverage for specific situations, such as when there are a limited number of patrons present. When only one lifeguard is conducting patron surveillance, that lifeguard has to scan the entire area, control the activities of patrons in and out of the water and recognize and respond to emergencies (Figure 3-13). If adequate coverage cannot be provided for all patrons, inform a supervisor that help is needed.

Emergency Back-Up Coverage

In emergency situations when two or more lifeguards are on duty and one lifeguard must enter the water for a rescue, lifeguards who remain out of the water must now supervise a larger area. They might need to move to better vantage points or close part of the swimming area, depending on the facility's design.

Figure 3-14, A illustrates zone coverage when three lifeguards are on surveillance duty. **Figure 3-14, B** shows an example of emergency back-up coverage for the same three-zone facility. **Figure 3-14, B** depicts lifeguard Y as the primary rescuer. He or she signals and enters the water (indicated by a dotted line). The other two lifeguards (lifeguards X and Z) stand in each of the lifeguard chairs and divide the responsibility for scanning the pool. Meanwhile, additional lifeguards or safety team members monitor the rescue and prepare to assist with additional equipment and call emergency medical services (EMS) personnel, if appropriate.

Lifeguard Stations

Lifeguards perform patron surveillance from a variety of positions including elevated, ground-level, roving and floating stations. Additional coverage at waterfront areas sometimes is provided by foot patrols, boat patrols...
and four-wheel-drive vehicles. The goal is to provide optimum coverage for the whole facility by placing lifeguards in positions to quickly recognize and respond to emergencies. To ensure that lifeguards stay alert, periodic rotations and breaks from surveillance are built into their surveillance schedules.

The location of any lifeguard station must allow you to see your entire zone. The lifeguard stand may need to be moved or the position adjusted during the day to adapt to the changing sun, glare, wind or water conditions. It is critical for you to have a clear view of your entire zone.

Elevated Stations

Elevated lifeguard stations generally provide the most effective position for a broad view of the zone and patron activities (Figure 3-15). This is especially important at a facility where a single lifeguard at a time performs patron surveillance. When you are scanning from an elevated station, be sure to include the area under, around and directly in front of the stand. Movable stands should be positioned close to the edge of the water with enough room to climb up and down from the stand.

The area surrounding an elevated stand must be kept clear of patrons or objects that might interfere with your ability to respond. You must know how to safely exit the stand, both in the course of a normal rotation as well as in an emergency. Be sure to practice with the rescue tube so that you are able to do so quickly and without getting injured. A safety zone should be established that allows access to the water in case of an emergency. At a waterfront, the safety zone should be thoroughly inspected with rakes and shovels before opening each day. This helps to prevent injuries to lifeguards during emergency exits from the lifeguard stand.

Ground-Level Stations

Lifeguards sometimes are assigned to a fixed location on a deck or in shallow water (Figure 3-16). These stations allow for quick response and are common around winding rivers, in shallow-water areas with play structures, and at the end of slides. The primary purpose of ground-level stations is to be close to patrons so you can easily make assists and enforce safety rules for patrons in the water and on the deck. While maintaining surveillance, you also can educate patrons about the reasons behind the rules; however, you should never become distracted from surveillance duties by talking socially with patrons or other staff.

Roving Stations

When a facility becomes unusually crowded, such as during a special event or activity, supervisors or managers might assign a lifeguard to a roving station. The
roving lifeguard is assigned a specific zone, which also is covered by another lifeguard in an elevated station. These roving, or walking, lifeguards are mobile and able to position themselves where needed within the zone. Combining the views from elevated stations with the mobility of the roving lifeguard provides extra coverage to help ensure effective patron surveillance.

Floating Stations (Rescue Watercraft)

In many waterfront facilities, lifeguards are stationed to watch swimmers from a water craft, usually as extra coverage. Rescue watercraft typically are used to patrol the outer edge of a swimming area. Often, someone in trouble in the water can be reached more quickly from watercraft than from a lifeguard station on the shore.

In a small, calm area, a rescue board, kayak or flat-bottom rowboat might be used (Figure 3-17). When patrolling on a rescue board, sit or kneel on the board for better visibility (Figure 3-18). Some protocols may require you to keep the rescue tube or buoy strapped across your chest or attached to the board. In rough water, rowboats might be used. Powerboats, inflatable boats and personal watercraft also can be used as rescue watercraft. Facility management normally provides on-the-job training in the use of watercraft at a facility.

If stationed on watercraft in water with a current, you might have to row or paddle to stay in position. Some watercraft have a special anchor line with a quick release for lifeguards to make a rescue. In some larger watercraft, one lifeguard maintains the craft’s position while a second watches the swimming area.

Make sure that you are well trained in operating the facility’s watercraft before using it for surveillance or to make a rescue. Use caution with motorized watercraft to avoid injuring swimmers or damaging lifelines when crossing into the swimming area to make a rescue.

Lifeguard Rotations

All facilities should have a defined rotation procedure. Rotations include moving from one station to another as well as breaks from surveillance duty. Lifeguards should get regular breaks from surveillance duty to help stay alert and decrease fatigue. Typically, you might perform patron surveillance for 20 or 30 minutes at one station, rotate to another station for 20 or 30 minutes, and then rotate off of patron surveillance duty to perform other duties or take a break for 20 or 30 minutes, thereby getting a break from constant surveillance. Rest and meal breaks should be factored into the rotation.

An emergency back-up coverage “station” often is included as a part of the rotation. The location may be a staff room or on the pool deck, pier or shoreline within sight.
of the swimming area(s). The lifeguard at this station is not responsible for patron surveillance but is expected to be able to immediately respond to the EAP signal in an emergency. (Chapter 5 covers information about emergency action plans.)

Your supervisor will establish a plan for lifeguard rotations, usually based on:

- Locations of stations.
- Type of station (elevated, ground-level, roving or floating).
- The need to be in the water at some stations.
- The number of patrons using an attraction.
- The activity at the station, such as wave durations at a wave pool.
- EAPs.

The rotation begins with the incoming lifeguard. While rotating, each lifeguard should carry his or her own rescue tube, and both lifeguards must ensure there is no lapse in patron surveillance, even for a brief moment. Each lifeguard must know who is responsible for scanning the zone—"owning the zone"—and at what time during the rotation. You will be transferring scanning responsibilities back and forth as the incoming lifeguard gets into position and the outgoing guard prepares to leave the station. Keep any necessary conversations brief and make sure that eye contact remains on the water.

As the incoming lifeguard, you should be aware of the patrons and activity level of the zone you will be watching. Begin scanning your zone as you are walking toward your station, checking all areas of the water from the bottom to the surface.

The outgoing lifeguard should inform you of any situations that need special attention. The exchange of information should be brief, and patron surveillance must be maintained throughout the entire rotation. Once in position, with the rescue tube strapped in place, make any adjustments needed, such as removing shoes or adjusting an umbrella before confirming to the outgoing lifeguard that you own the zone. The outgoing lifeguard should continue scanning as he or she is walking toward the next station. The skill sheet at the end of this chapter outlines the steps for rotations for ground-level and elevated stations.

WRAP-UP

A lapse in coverage—even for just a few seconds—could result in injury or death. A lifeguard must be alert for dangerous behaviors and able to recognize a distressed swimmer and a drowning victim who is active or passive. Effective scanning techniques and lifeguard stations are needed both to prevent incidents and locate people in trouble.
At a ground-level station, you (the incoming lifeguard) should:

1. Begin scanning your zone as you are walking toward your station. Note the swimmers, activities and the people on the deck. In a pool or waterpark setting where the water is clear, check the entire volume of water from the bottom of the pool to the surface of the water.

2. Walk to the side of the lifeguard being relieved and begin scanning the zone.

3. Exchange information. Ask the lifeguard being relieved whether any patrons in the zone need closer than normal supervision.

4. Once scanning has started, signal or tell the outgoing lifeguard that you have the zone covered and he or she can rotate.

5. The outgoing lifeguard continues scanning as he or she is walking toward the next station.
ROTATIONS—Elevated Station

At an elevated station, you (the incoming lifeguard) should:

1. Begin scanning your zone as you are walking toward your station. Note the swimmers, activities and the people on the deck. In a pool or waterpark setting where the water is clear, check the entire volume of water from the bottom of the pool to the surface of the water.

2. Take a position next to the stand and begin scanning the zone. After a few moments of scanning, signal the lifeguard in the stand to climb down.

3. Once on the deck, the outgoing lifeguard takes a position next to the stand and is responsible for surveillance of the zone. Climb up in the stand, make any adjustments to equipment or personal items and begin scanning.

4. Exchange information. Ask the lifeguard being relieved whether any patrons in the zone need closer than normal supervision.

5. Signal or tell the outgoing lifeguard that you have the zone covered and he or she can rotate.

6. The outgoing lifeguard continues scanning as he or she is walking toward the next station.
Injury Prevention

Lifeguards are essential for keeping aquatic facilities safe. Unlike most other professional rescuers, lifeguards are present to help prevent emergencies from occurring. As a lifeguard, one of your goals is to prevent injuries; therefore, it is important for you to understand how injuries occur and know the best strategies for preventing them. In addition, you must be prepared to meet the safety challenges presented by visiting groups as well as the various activities and features at your facility.
HOW INJURIES HAPPEN

Aquatic injury prevention is part of your facility's risk management program. Risk management involves identifying dangerous conditions or behaviors that can cause injuries and then taking steps to minimize or eliminate those conditions or behaviors. Even though lifeguarding requires performing emergency rescues, far more time is spent on preventive lifeguarding—trying to make sure emergencies do not happen in the first place.

Although not all emergencies can be prevented, knowing what causes life-threatening injuries can help you to prevent many of them. Injuries either are life threatening or non-life-threatening. Examples of life-threatening injuries include drowning and injuries to the head, neck or spine. Life-threatening conditions that can result from an injury include unconsciousness, breathing and cardiac emergencies, severe bleeding and drowning.

Drowning begins when a person’s mouth and nose are submerged and water enters the airway, regardless of the water depth. Drowning can occur in shallow or deep water. In shallow water a toddler may fall over and be unable to stand or unable to raise the head up. Drowning also may result when a nonswimmer enters or falls into water over his or her head, when a poor swimmer becomes exhausted and cannot stay afloat or when a patron is incapacitated in the water due to a medical emergency, such as a seizure or cardiac emergency.

Most head, neck or spinal injuries at aquatic facilities result from a high-risk/high-impact activity, such as head-first entries into shallow water. If a victim’s head strikes the bottom or the side of the pool, the spinal cord can be damaged, causing paralysis or death.

Non-life-threatening injuries also occur in aquatic facilities. Examples of non-life-threatening injuries include fractures or dislocations, abrasions (scratches), superficial burns (sunburns), muscle cramps (caused by overexertion), heat exhaustion, dehydration and sprains and strains.

Non-life-threatening injuries can occur by slipping, tripping, falling when running or getting cut on sharp objects. They also can occur when patrons do not follow rules when using play equipment or slides. If you understand how most injuries occur, you can help prevent them by increasing your awareness of risks and hazards, helping patrons to avoid risky behavior and developing a safety-conscious attitude at your facility.

INJURY-PREVENTION STRATEGIES

As you learned earlier in this course, your injury-prevention responsibilities include taking steps to ensure that the facility is safe and providing effective patron surveillance. Another important injury-prevention responsibility is communicating with patrons, which involves educating and informing patrons as well as enforcing your facility's rules.

Communicating with Patrons

Communicating with patrons is an important injury-prevention strategy. It requires you to inform and educate patrons about inappropriate behaviors and the potential for injury. Communication also includes consistently enforcing rules and regulations in a positive, customer-friendly manner.
Informing and Educating Patrons

Patrons need to know about risks that could cause injury. Signs communicate warning, provide instructions on how to use equipment and list rules and regulations to prevent behaviors that can lead to injury (Figure 4-1). Part of your role, too, is to inform patrons about the potential for injury; therefore, you need to understand the rules and regulations of your facility and the rationale behind them.

Patrons may be unfamiliar with a facility’s features or get so excited that they do not read signs or pay attention to the rules. If patrons are not following the rules, it is your job to inform them of the possible consequences. Explaining rules in a positive way encourages patrons to behave safely. The following steps can prevent a patron from engaging in risky behavior:

- Get the patron’s attention, for example by blowing a whistle, and saying, “Excuse me.” (Figure 4-2)
- Explain the hazard or danger, for example, “If you dive into shallow water, you might hit your head on the bottom and get injured.” Or say, “You may slip and hurt yourself if you run.” Simply telling someone not to do something often does not work. People usually understand and cooperate when they know why something is dangerous.
- Explain a safe option. For example, say, “If you want to dive, please go to the deep end of the pool where it is safe.” Or say, “Excuse me, diving into shallow water is dangerous and can cause a head injury. Please use the deep end.” Or say, “Walk, please.” This type of explanation gets the patron’s attention, clarifies the danger, emphasizes the consequences of the risky behavior and offers safe options, if available and appropriate.

Enforcing Rules

By enforcing the rules, you help to prevent injuries and encourage safe patron behavior. When conducting patron surveillance, keep rule enforcement brief by using only a few words or short phrases, such as, “Slow down,” or by giving a hand signal. When enforcing rules, be consistent, fair and respectful. In some cases the patron may not know the facility’s rules or may not understand them. Always use age-appropriate enforcement methods that are approved by the facility’s policies.

If certain patrons repeatedly break the rules even after you have attempted to correct their behavior, you could direct them to leave the water for a set time. Signal for someone who is not engaged in patron surveillance, such as another lifeguard or
INTERACTING PROFESSIONALLY WITH THE PUBLIC

When you are on duty, your actions should promote an atmosphere of professionalism, safety, trust and goodwill. The following general guidelines will help you display a professional image and maintain a positive relationship with patrons:

- When conducting patron surveillance, any verbal interaction should be brief and your eyes should remain on the water. Politely refer the patron to a staff member who is not conducting surveillance if necessary.
- When not conducting patron surveillance:
 - Treat people as you would like to be treated. Make every patron feel welcome, important and respected.
 - Be professional at all times. Be courteous, mature and responsible. Never insult or argue with a patron.
 - Speak clearly and calmly, at a reasonable pace and volume.
 - Use appropriate language, but do not patronize or speak down to anyone, including children.
 - When interacting with patrons, make frequent and direct eye contact. Remove your sunglasses, if necessary. When speaking to small children, kneel down to be at eye level with them.
 - Take all suggestions and complaints seriously, and follow up as necessary. Avoid blaming anyone. If you cannot resolve a complaint, take it to your facility’s management. Always follow the facility’s procedures.
 - Repeat the concern expressed by the patron back to him or her to ensure that you understand the concern correctly.
 - Do not make promises that cannot be kept.
 - Enforce rules fairly and consistently. Be positive and nonjudgemental. Reinforce correct behavior.
 - Take a sincere interest in all patrons.

Nonverbal Communication

Spoken words make up a surprisingly small part of overall communication. A listener automatically tends to make judgments about a speaker’s attitude based on the volume, pace, tone and pitch of the speaker’s voice. A listener also reacts positively or negatively to visual cues or body language. You can gauge a person’s attitude as cooperative or confrontational by evaluating these cues; know that the listener will be doing the same.

Nonverbal communication also is expressed while you are on duty, whether you are conducting patron surveillance or performing secondary responsibilities. Patrons may make judgments about your professionalism by observing your appearance, demeanor, posture and behavior. Lifeguards are “on stage” and set the tone while on duty.
DEALING WITH UNCOOPERATIVE PATRONS AND VIOLENCE

No matter how fairly you enforce the rules, you may encounter an uncooperative patron. Before assuming that a patron is being uncooperative, you should make sure that he or she hears and understands you.

If a patron breaks the rules and is uncooperative, you should take action right away because breaking the rules can be a danger to the uncooperative patron and to others. Most facilities have procedures for handling uncooperative patrons; however, if your facility does not have a procedure, you should call the lifeguard supervisor or facility manager for help as soon as possible.

A patron may threaten to or commit a violent act. You must be realistic about what can be done in a violent situation. If violence is likely to erupt, call the supervisor or facility manager immediately. If violence does erupt, do not try to stop it. Never confront a violent patron physically or verbally and do not approach a patron who has a weapon. In such a situation, the best approach is to retreat and follow the facility’s EAP for violence. Safety for patrons and facility staff should be your main goal.

EFFECTIVE GUARDING—INJURY PREVENTION CHALLENGES

A supervisor, to explain the rules and their rationale. If the patron is a child and a parent or guardian is available, the rules should be clearly explained to the adult as well. Since most people want to be treated with respect, simply explaining and enforcing the rules usually is sufficient. If a parent or guardian is uncooperative, do not argue, but instead ask a supervisor or facility manager to assist you.

A patron may become uncooperative and defiant, compromising his or her safety and the safety of others. If this happens, you should summon a supervisor or facility manager, who may ask the patron to leave the facility. Use this approach only when other methods have failed.

If a patron refuses to leave after being told to leave for repeatedly breaking the rules, the supervisor or manager may choose to call the police or security personnel. Every facility needs a procedure for removing someone from the facility. This procedure should have specific steps and guidelines to follow. Any such action should be recorded in the facility’s daily log and on the appropriate form or report.

Lifeguards should be conducting patron surveillance anytime the facility is being used by patrons or staff. A major goal of patron surveillance is looking for behaviors
that indicate someone may need assistance. As part of your patron surveillance, you also may have specific responsibilities based on the facility’s activities or features, such as enforcing age or height requirements, helping patrons with equipment or ensuring that riders are in the proper position. These responsibilities will vary and may include guarding:

- A variety of activities occurring simultaneously.
- “Kiddie” areas, play structures, special attractions, water slides, winding rivers and wave pools.
- Organized recreational swim groups and youth camps.

Guarding Activities

Facilities often have a variety of activities taking place simultaneously, all of which require your surveillance. Examples include:

- Open or recreational swim.
- Water exercises, such as water walking and lap swimming.
- Instructional classes, such as swim lessons, water therapy, water exercise and SCUBA lessons.
- Swimming, water polo, synchronized swimming and other team practice.
- Competitive events, such as swim meets and triathlons.
- Special events, such as movie nights and pool parties and after-hour rentals.

To help you identify patrons who may need assistance, be aware of the age and ability levels of those participating in the activity. For example, you may notice a young child in beginner-level swim lessons moving toward water over his or her head or an elderly man stopping frequently as he swims laps.

Each activity has its own unique characteristics and risks. Some activities, such as SCUBA classes, may require that you receive special training on what to look for specifically or be aware of while you are on surveillance duty. Considerations and questions that need to be answered for effective guarding include:

- What things could go wrong that are unique about this activity?
- What is the swimming ability or comfort level in the water of patrons involved in this activity?
- Are there any unique challenges or obstacles to recognizing an emergency, approaching a victim or performing a rescue?
- Do participants have any medical conditions that increase the chances for sudden illness or injury due to the nature of the activity?

Instructional Classes

Instructional classes are a type of general activity but have the benefit of supervision by trained personnel. Although the instructor is responsible for the safety of the class, that does not relieve you of your responsibilities. You must still scan every person in the water and enforce rules, perform rescues and provide first aid as appropriate. However, with proper preparation, instructors may become valuable members of your safety team. Facility management should share and practice emergency action plans (EAPs) with instructors, clarify their roles during an emergency and share those roles with you. Some instructors will have lifeguard training and specialized rescue skills; others will not.
Having an instructor present may help you to ensure patron safety because he or she may be:

- Familiar with special equipment. Therapy classes may use wheelchairs, lifts and special flotation devices. Instructors for those classes should be able to recognize and deal with potential problems with such devices.
- Familiar with the behavior of specific types of patrons. Instructors may be able to recognize subtle signs of potential problems that may not be obvious to you. For example, a water exercise instructor may detect the early signs of overexertion of a patron in that class.
- Able to help in an emergency related to the specialized class. For example, a SCUBA instructor should know how to deal with and respond to a victim wearing a SCUBA tank and buoyancy control device.

Guarding Areas for Young Children

Many facilities have shallow pools for young children. It is common for these areas to have play equipment, including slides, fountains, inflatable play equipment and climbing structures (Figure 4-3). Effective patron surveillance at these areas is essential, even though the water may be shallow. Enforce rules, such as height and age requirements, fairly and consistently. Note that:

- Older children might be too large for some structures, or their play might be too rough for young children.
- Toddlers who are still learning to walk may fall easily. If they fall down in water, they usually cannot lift themselves to an upright position, even if the water is ankle or knee deep.
- Children often get lost. Remind adults to supervise their children at all times.
- You must watch out for young children using the pool as a toilet. The facility should have procedures for preventing and addressing the situation, including handling fecal incidents, which follow local health department guidelines.
- Children usually do not think about overexposure to the sun or hypothermia. If a child is becoming sunburned or overly cold, immediately inform the child’s parent or guardian.

Guarding Zones with Play Structures

Facilities may have play structures that are either permanent or removable (Figure 4-4). Permanent structures include sprays and fountains, interactive water-play structures and dumping buckets. Removable structures include large floating toys, inflatable play structures and water basketball and volleyball nets. Some play
structures require their own lifeguards, whereas others are watched by lifeguards surveying a larger area.

While guarding at play structures:

- Do not let a play structure become overcrowded. Be prepared to restrict the number of patrons using it at one time.
- Do not allow patrons to swim underneath structures.
- Watch that patrons return to the surface after dropping into the water from a floating feature. Swimmers can be surprised by the fall or become disoriented, especially if they do not realize they will be dropping into deep water.
- Pay close attention to children playing in and around sprays, fountains and interactive water-play structures. These attractions usually are in shallow water. Excited children may run and fall. A very young child who falls might not be able to get back up or may strike his or her head.
- Pay close attention to patrons in moving water. Moving water can surprise people. They might lose their balance and be unable to stand up again.
- Watch for overcrowding and horseplay on floating structures. These structures are tethered to the bottom of the pool; some allow patrons to walk from one floating structure to another while holding onto an overhead rope (Figure 4-5).
- Keep play safe and orderly.
 - Patrons may climb onto floating toys and jump back into the water. They may not notice what is around them and jump onto other swimmers or into water that is over their heads.
 - Patrons may throw balls and other toys and hit unsuspecting swimmers, resulting in injury.

Guarding Special Rides and Attractions

Special attractions create a lot of excitement and can include rides, such as bowl slides, multi-person raft rides, uphill water coasters and high-speed water slides. Some attractions found at deep-water pools also include diving platforms, cable swings and hand-over-hand structures like ropes, nets and rings. In a waterpark setting, there are multiple attractions designed for a variety of age groups and abilities. Regardless of the patron’s swimming ability, patrons may become fearful, disoriented or off-balance, thus requiring assistance.

Follow these general principles when guarding attractions:

- Watch patrons as they enter and exit an attraction. Dispatch patrons safely on a ride at set intervals. Dispatching is the method of informing patrons when it is safe for them to proceed on a ride.
- Carefully watch both the water below and the activities overhead.
- Keep patrons in view as long as possible. Keeping patrons in view can be
a problem on some attractions: structures, such as caves, enclosed tubes, bridges and buildings, might prevent you from seeing patrons at all times. When a patron goes out of sight, watch to make sure that he or she emerges safely on the other side.

- Ensure that patrons who submerge return to the surface. The excitement may cause weak swimmers or nonswimmers to overestimate their abilities or underestimate the water’s depth.
- Be aware of special risks. Structures designed to have patrons sit or climb on them, or swim over or under them, pose hazards. Supervise patrons carefully. Someone who falls off of a mat, raft or tube might be injured or pose a hazard to another patron.

Guarding at Water Slides

On some water slides, patrons ride on an inner tube, raft, mat or sled. On others, riding equipment is not allowed. On some slides, only one person is allowed on an inner tube or a raft. On others, two or more people can go together on a special tube or raft. On an inner tube or raft, patrons ride in a sitting position. If no equipment is used, the proper riding position typically is face-up and feet-first. Lifeguard stations may be positioned at the top, middle and/or bottom of a slide.

Follow these guidelines when lifeguarding at a water slide:

- When dispatching at the top of a slide:
 - Check that patrons are tall enough to use the slide by using a measuring pole or line on a wall (Figure 4-6).
 - Instruct riders how to ride down the slide according to manufacturer’s instructions and facility protocols and make sure they are in the correct riding position.
 - Instruct riders not to stop on the slide.
 - Help riders with the equipment.
 - Confirm that the riders are ready to go and signal them to start.
 - If assisting riders to take off, use tube handles when available. Avoid pushing or pulling riders by their shoulders, arms or legs.
 - Dispatch the next rider(s) at the proper intervals. For drop-off slides, speed slides and free-fall slides, ensure that the previous rider has left the runout end of the slide or the catch pool and the lifeguard at the bottom has signaled for the next rider.
 - If you can see the lifeguard at the bottom, he or she can use a hand signal or whistle.
 - If you cannot see the lifeguard at the bottom, a mechanical system, such as light signals, can be used.

- When stationed at the middle of a slide:
 - Watch for riders who:
 - Stop, slow down, stand up or form a chain.
 - Lose their mat, tube or raft or have trouble getting down the slide.
• Hit their heads on the side of the slide.
 ○ Alert the dispatcher and lifeguard at the end of the slide of the situation and assist patrons as necessary.

When stationed at the bottom of a slide:
 ○ Observe all riders exiting the slide into the catch pool (Figure 4-7). Patrons might not realize the depth of the catch pool and may need assistance.
 ○ Assist riders who appear to be off balance or get caught underwater in the strong downward flow of water in the catch pool. This strong force can knock a person off balance or hold a small person or nonswimmer under water.
 ○ Help riders, if needed, from the runout or catch pool. Some patrons might be disoriented or frightened from the ride (Figure 4-8).
 ○ Ensure that riders do not cross in front of any slide when getting out of the runout or catch pool.
 ○ Signal the lifeguard at the top when each rider has moved out of the catch pool or runout and it is clear to send the next rider.

Guarding Winding Rivers

In a winding river, water flows in a long circular or twisting path through a facility. Depending on the winding river, patrons may be floating on tubes, walking or swimming. Some wear life jackets, some do not. Water speeds may vary. Lifeguards may be positioned at the entrance and exit. They also may be positioned at several elevated or ground-level stations or at a combination of both with overlapping zones around the river (Figure 4-9).

When guarding a winding river:
 ■ Ensure that patrons enter and exit at designated locations.
 ■ Watch for inexperienced swimmers falling off their inner tubes or inflatable rafts. It will be difficult for you to see all patrons or the bottom of the winding river if there are a lot of tubes and rafts in the water. Similarly, it can be difficult for someone who falls off a raft or tube to come up for air if the surface is blocked. In addition, someone who is hit by an inflatable raft might be knocked down, hit the bottom and get into trouble.
 ■ Watch for patrons around features in winding rivers, such as fountains and waterfalls, which can catch patrons off-guard or cause patrons to gather.
 ■ Watch carefully for, and correct, risky behavior.
LIFE JACKETS

The U.S. Coast Guard has categorized personal flotation devices (PFDs) into five categories. They are rated for their buoyancy and purpose. Types I, II, III and V are referred to as life jackets, whereas Type IV is a throwable device.

Swimming ability, activity and water conditions help determine which type of life jacket to use. For any type, it should be U.S. Coast Guard approved and in good condition. The U.S. Coast Guard label is stamped directly on any approved device (see image below).

Facilities may have policies addressing the use of life jackets in a pool, waterfront or attraction. Type II and III life jackets are most commonly used in these settings. In general, anyone who cannot swim well should wear a life jacket if they are going to be in or around the water at an aquatic facility; however, in some cases, such as on certain slides, life jackets are not permitted. In other cases, such as fast-moving winding rivers, life jackets are recommended or may be required. Life jackets may be available at a facility for rent or free of charge.

As a lifeguard, you may be tasked with:

- Ensuring that life jackets are U.S. Coast Guard approved. Inflatable toys and swim aids, such as water wings, swim rings and other flotation devices, are not designed to be used as substitutes for U.S. Coast Guard-approved life jackets or adult supervision.

- Ensuring that life jackets are in good condition. Buckles and straps should be in good working condition. There should be no rips, tears, holes or shrinkage of the buoyant materials.

- Helping patrons to select a properly sized life jacket. Life jackets are sized by weight. Check the U.S. Coast Guard label and be sure that it is matched to the weight range of the patron.

- Ensuring that life jackets are properly worn by patrons. A properly fitted life jacket should feel snug, keep the person’s chin above the water and allow the person to breathe easily. The life jacket should not ride up on the patron’s body in the water. Completely secure any straps, buckles or ties associated with the life jacket.

- Ensuring that patrons properly use life jackets. Correct any improper wearing or use of life jackets. Do not allow patrons to wear multiple life jackets or stack multiple life jackets on top of each other to be used as floats.

You should remove any extra empty life jackets from the water. An empty life jacket in the water should be a signal that something is wrong. Consistent enforcement of rules related to life jacket use can lead to appropriate behavior by all patrons.
<table>
<thead>
<tr>
<th>Type</th>
<th>Style</th>
<th>Typical Use</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Life jacket</td>
<td>Boating on offshore waters or rough water where rescue may be delayed</td>
<td>May help to turn an unconscious person from a face-down position to a vertical, face-up position, or a face-up, slightly tipped-back position</td>
</tr>
<tr>
<td>II</td>
<td>Buoyant vest</td>
<td>Recreational boating on inland waters where a rescue is likely to occur quickly. Good for calm or inland water. Suitable for supervised use in pools and waterparks.</td>
<td>May help to turn an unconscious person from a face-down position to a vertical, face-up position, or to a face-up, slightly tipped-back position. Is less buoyant than a Type I life jacket</td>
</tr>
<tr>
<td>III</td>
<td>Flotation vest</td>
<td>Fishing or sailing on inland waters where a rescue is likely to occur quickly. Good for calm or inland water. Suitable for supervised use in pools and waterparks.</td>
<td>May help to keep a conscious person in a vertical, face-up position, or in a face-up, slightly tipped-back position; wearer may have to tilt the head back to avoid going face-down</td>
</tr>
<tr>
<td>IV</td>
<td>Throwable device, such as a buoyant cushion or ring buoy</td>
<td>Boating on inland waters with heavy boat traffic where help always is present</td>
<td>May be thrown to a victim in an emergency; does not take the place of wearing a life jacket or vest</td>
</tr>
<tr>
<td>V</td>
<td>Special use</td>
<td>Intended for specific activities, such as whitewater rafting and special offshore work environments</td>
<td>Acceptable only when used according to directions on its label</td>
</tr>
</tbody>
</table>
Guarding Wave Pools

Wave pools are popular attractions that produce waves of various heights, intervals and patterns. Wave pools vary in size, shape and depth (Figure 4-10). At one end is the head wall, where a mechanical system creates the waves. Lifeguards are stationed at various places around or in the pool and also may be stationed on the head wall for a better view of the pool (Figure 4-11). Wave pools operate on a cycle, such as 10 minutes with the waves on and 10 minutes with them off.

When guarding a wave pool:

- Ensure that patrons enter only in the shallow end.
- When the waves are on, stand up to get a better view of patrons.
- Watch for swimmers who get knocked over by the waves or carried into deeper water by the undercurrent. Inexperienced swimmers may go to where the waves break because of the excitement.
- Do not let patrons dive into the waves or dive through inner tubes.
- Keep the areas around ladders and railings clear so that patrons can exit from the pool quickly.

- Keep other swimmers out of the pool during special activities, like surfing. The surfboards or boogie boards in the wave pool can present a hazard to others.
- Before performing an emergency rescue, turn the waves off using the emergency stop (E-stop) button at the lifeguard chair (Figure 4-12).
- Rotate positions only when the waves are off.
Guarding Organized Recreational Swim Groups

Groups of all sizes visit aquatic facilities for recreation. This includes groups from day-care centers, day camps and youth organizations as well as school groups, sports groups and groups visiting facilities for birthday parties. These groups may be based out of your facility and swim regularly or may visit one or more times as a field trip. Groups often are supervised by leaders, chaperones or camp counselors. These supervisors may assist with discipline but do not take the place of lifeguards. Group leaders may be in the water with the group, on the deck or shore, or a combination of both. Group leaders should know how to alert lifeguards in an emergency.

In some cases, most group members will have similar swimming abilities, such as a day-care center group composed of preschool-age nonswimmers. The swimming ability of other groups may vary widely, such as in a youth-camp group with a wider age range of children.

Sometimes, a group will reserve all or part of a facility for its own instructor to teach a class, lead a practice or conduct skill checks (Figure 4-13). These activities may include kayaking, SCUBA diving or swim team tryouts.

In general, when guarding groups, you should:

- Ensure that swimming areas are divided according to swimmers’ abilities and are clearly marked.
- Ensure that patrons stay in the sections appropriate for their swimming abilities. Be aware that weak or nonswimmers, excited to be together enjoying a recreational activity, may attempt to venture into areas that are beyond their swimming ability.
- Provide U.S. Coast Guard-approved life jackets for weak or nonswimmers.
- Know how to identify group leaders or chaperones.
- Ensure that chaperones are actively supervising the members of their group and that the appropriate swimmer-to-chaperone ratio is met. If it appears that they are not doing so, alert your facility’s manager.
- Signal for additional lifeguard coverage, such as a roving lifeguard, if you feel you cannot effectively guard your zone. You may need to do this at the beginning of the swim time while the group gets adjusted to the facility’s rules or if large groups are concentrated in one area.

For groups using buddy checks (see Guarding at Youth Camps, page 68), you may need to signal the buddy check, confirm that everyone is accounted for and count the individuals or buddy pairs, depending on the system being followed.

Regardless of a group’s makeup or activities, as a lifeguard, you still are responsible for helping to ensure the safety of its members. To help groups remain safe and injury free, your facility’s manager may develop plans and strategies in advance.

Strategies for Safe Group Visits

Facilities often implement additional strategies for injury prevention and swimmer management during group visits. Group leaders should meet in advance with
managers at the facility to discuss appropriate plans and procedures. A copy of the facility rules as well as written expectations of group leaders should be provided in advance of the group visit, when possible. Strategies for ensuring safe group visits typically involve one or more of the following:

- **Booking procedure.** Before the visit, group leaders should provide the aquatic facility with information about how many group members and supervisors will be visiting. This is especially important with large camp groups, which require additional time to process through safety orientation, swimmer classification and identification procedures. Confirming the supervisor-to-swimmer ratios helps facility managers to plan appropriate staffing levels. Group leaders also should inform the facility about any special characteristics of the group, such as the percentage of swimmers and nonswimmers. Any staff who will be accompanying the group should be informed about how to help supervise group members around and in the water and how to help the lifeguards in an aquatic emergency.

- **Safety orientation.** Safety orientations are conducted when groups first arrive at the facility. The purpose is to educate all members of the visiting group on your facility’s policies and rules and to point out key safety issues. You may be tasked with conducting these orientations.

- **Classification of swimming abilities.** Swim tests are administered to determine if a visitor has the minimum level of swimming ability required to participate safely in activities, such as swimming in water over his or her head or riding on certain slides. If your facility administers these tests, management may have developed a system for lifeguards to easily identify patrons’ swim levels. For example, levels can be identified by color-coded wristbands or swim caps (Figure 4-14). A red armband might identify someone is a beginner who needs to stay in the shallow end; a green armband might identify someone who can go in deep water.

- **Designation of swimming areas.** Swimming areas should be clearly marked and defined according to swimmers’ abilities and intended use. Buoyed ropes should divide shallow and deep water. Multi-use facilities often divide the water into sections for general recreation swim or lap swim, or divide areas for floatable features or play structures. In waterfront areas, the swimming area should be restricted from the nonswimming areas, and there should be some type of continuous barrier, such as buoyed lifelines, piers or decks, around the perimeter of areas set aside for weak or nonswimmers to prevent them from straying into deep water. All swimming areas should be explained to the group and its leaders during the safety orientation.

- **Identification of group leaders or adult chaperones.** Your facility should use an identification system so that lifeguards and other facility staff can easily locate group leaders or adult chaperones. For example, group leaders could wear a laminated lanyard or a brightly colored baseball cap or T-shirt to identify them as being responsible for that group.

- **Supplemental group strategies.** Other strategies, such as the buddy system and buddy checks, sometimes are used to provide an additional layer...
of protection. These are particularly helpful with camp groups, which can be large. For more details on the buddy system, see page 68.

How to Conduct a Safety Orientation

If you are tasked with providing a safety orientation to a visiting group, you will need to cover general water safety as well as information specific to your facility (Figure 4-15). When conducting a safety orientation:

- Ensure that group leaders or adult chaperones are present and that they can be clearly identified by all members of the facility staff.
- Make it fun and build rapport with the group. Ask questions rather than reading a list of rules. This allows you to become more familiar with what group members already know as well as gauge their level of understanding. Explain the reasons for any rules that group members do not understand.
- Identify areas where they can and cannot swim, if applicable.
- Point out where the lifeguards are stationed and inform the group how to get additional help if needed.
- Confirm the swimmer-to-supervisor ratio expected for group leaders and divide the group so that group leaders have a designated set of people to oversee.
- Issue any identification and/or swim classification items to group members and leaders, such as colored wristbands.

Safety topics typically covered during an orientation include general aquatic safety rules, swimming area sections, water depths, features or play structures, equipment, how to use approved floatation devices, rule signage locations and operational information, such as buddy checks or breaks.

How to Administer a Swim Test

Swim tests can be used to determine if a person has the minimum level of swimming ability required to participate safely in activities, such as swimming in deep water, riding a slide that empties into deep water or jumping off a diving board into deep water. There is no single set of swim-test criteria that best meets the needs of all facilities or organizations, nor is the following information intended to set a standard. If administering swim tests, each facility or organization should establish its own requirements based on the facility’s design and features, the activities offered and common practices.

During your facility-specific training, you should be provided with standard procedures and criteria for conducting swim tests. Never administer a swim test while performing patron surveillance duty. When administering a swim test:

- Have the swimmer take the test in a safe area, such as near a wall, safety line or lap lane.
- Have the swimmer take the test in shallow water first. If successful, have the swimmer move to the deep water and take the test.
Be prepared to assist a person who may struggle in the water while attempting the swim test. Swimmers may overestimate their abilities (Figure 4-16).

Ensure that chaperone(s) are present during the test, if applicable.

Ensure that the person has safely exited the water after the test is complete.

When the test is competed, tell the swimmer where he or she is permitted to swim.

To be eligible to swim in deep water, swimmers should be able to at least:

- Jump into the water, level off at the surface of the water and begin to swim.
- Swim at the surface of the water without using anything for support, such as touching the bottom, the wall or the safety line.
- Be able to swim a distance equal to the maximum width of the deep-water swimming area section of the facility.
- Demonstrate breath control—the ability to pick up or turn the head to get a breath while swimming.
- Exit the water independently.

After the initial test, additional swim tests should be conducted at intervals throughout a season to determine if swimming abilities have improved.

Guarding at Youth Camps

Some youth camps operate their own waterfront and pool facilities. If you are working at one of these camps, your area of responsibility and patron load may be smaller than those at a public facility because typically campers will be your only patrons. Some camps will supplement trained lifeguards with other staff who, after proper orientation, will serve as spotters or lookouts; however, these staff members never should take the place of lifeguards.

At the beginning of a camp session, all participants and staff who will be involved in aquatic activities should be given a swim test. After the initial test, additional swim tests should be conducted at intervals throughout the camp session to determine if participants’ swimming abilities have improved. Participants who arrive after the initial test has been given also should be tested.

Youth camps with their own aquatic facilities often implement additional prevention strategies, including the buddy system, buddy boards and buddy checks.

Buddy Systems

The buddy system is used by camps to enhance safety for swimming groups. Under the buddy system, one participant is paired with another participant of similar swimming skills. The pair then is assigned to a specific swimming area. If buddies do not have similar swimming skills, the pair should remain in the swimming area suitable to the weakest swimmer’s abilities.
Buddies must be instructed to stay together and be responsible for one another. They need to tell a lifeguard immediately if their buddy is in trouble or missing, at which time you should take immediate action.

The buddy system provides useful safeguards to help account for swimmers by having each buddy look out for the other; however, it does not replace lifeguard surveillance.

Buddy Boards

A buddy board helps to keep track of everyone in the swimming area (Figure 4-17). Typically it is a large, permanent structure mounted within the confines of the swimming area near the entrance.

Generally, a buddy board works as follows:

- Based on the initial swim test, each person gets a colored tag with his or her full name and group designation, such as a cabin or campsite number. Tags should be color-coded or labeled by swimming ability, such as “swimmer” or “nonswimmer.”
- A lifeguard or other staff member is stationed at the buddy board to make sure that tags are placed correctly and that everyone who enters or leaves the swimming area moves his or her tag appropriately.
- Before buddies enter the water, they hang their tags on hooks on the section of the board that indicates the swimming area in which they will be swimming. The buddies’ tags should be next to each other to indicate that they are a pair. Tags should be placed on separate hooks to facilitate a reliable count.
- If buddies decide to move from one section to another, such as from the deep to the shallow area, they must first notify the person at the board and move their tags.
- When buddies leave the water, they move their tags to the “Out” section.

Buddy Checks

The primary purpose of buddy checks is to account for all swimmers and to teach buddies to continuously monitor their partners. Buddy checks often are set for specific timed intervals.

To initiate a buddy check, a lifeguard, lookout or supervisor gives a prearranged signal, such as a whistle blast. The buddies grasp each other’s hands, raise their arms over their heads and hold still while the staff accounts for everyone (Figure 4-18). Buddies do not have to leave the water: those in shallow water may stand in place, those in deep water may move with their buddy to the side and those already on deck should remain there.
Two methods commonly are used to confirm that the staff has accounted for everyone. Both use a buddy board or other tracking system.

- Method 1: Lifeguards count the swimmers in each area and relay those numbers to a monitor. The monitor checks the numbers against the total on the buddy board or other tracking device.
- Method 2: Each pair of buddies is given a number. The monitor calls off the numbers in order, and buddies respond when their number is called.

If everything matches, the buddy check is over. If a buddy check reveals a missing person, you should immediately suspect that the buddy is submerged and activate your facility’s EAP.

Although the buddy system provides useful safeguards, buddy checks are not conducted frequently enough to substitute for normal surveillance. You should never depend on the buddy system as the only method of supervision. You must constantly scan your zone of responsibility, looking for the behaviors of swimmers in trouble.

WRAP-UP

As a lifeguard, one of your goals includes helping to ensure that serious injuries never happen. The more you know about how injuries occur, the better you will be able to prevent them. Good communication with patrons is vital in preventing injuries. You should inform patrons about the potential for injury and educate them about the consequences of risky behavior. It also is important to develop strategies for dealing with injury-prevention challenges at your facility.
Emergency Action Plans

While on duty, you may need to respond to a variety of situations ranging from aquatic emergencies and facility problems to missing persons, sudden illness and severe weather. Your role will be spelled out in your facility’s emergency action plan(s) (EAPs). EAPs are detailed plans describing the safety team’s responsibilities in an emergency.

During orientation, in-service training and in simulation drills, you should learn and practice your assigned roles in EAPs. You should know the roles assigned to lifeguards based on where they are positioned or who is the primary rescuer and also become familiar with the roles assigned to other members of the safety team—all outlined in the EAP.

To be effective, lifeguard and safety teams should practice the EAPs regularly, using a variety of simulated emergency situations. Remember that in some emergencies, only a few minutes can make the difference between life and death. To give a drowning victim the greatest chance for survival and a normal outcome, you must be able to efficiently implement the EAP and provide resuscitative care.
TYPES OF EMERGENCY ACTION PLANS

Every aquatic facility has its own specific set of EAPs based on the unique characteristics at each facility. Factors such as the facility’s layout, number of staff on duty at a time, location of back-up lifeguards and other safety team members, equipment used and typical response times of the local emergency medical services (EMS) system are included in the plan. EAPs should be practiced regularly and included in your facility’s policies and procedures manual.

Aquatic facilities often have a general plan for water and land rescues, as well as additional plans designed to address specific situations. Examples of situation-based EAPs include:

- Water emergency—Drowning victim—active (Flowchart 5-1).
- Water emergency—Drowning victim—passive (Flowchart 5-2).
- Water emergency—Spinal injury victim.
- Water emergency—Missing person.
- Land emergency—Injury or illness.

Other situations requiring an EAP include evacuations, sheltering in place, severe weather, chemical spills or leaks, power failures and violence.

Along with detailing the role that you and your lifeguard team will play in an emergency, EAPs also identify the very important roles played by other members of the safety team.

Role of the Safety Team

As discussed in Chapter 1, the lifeguard team is part of a larger safety team—a network of people who prevent, prepare for, respond to and assist in an emergency at an aquatic facility (Figure 5-1).

Safety team members working on-site may include aquatics instructors; admissions personnel; retail, concession and administrative staff; maintenance, custodial and security personnel; supervisors and administrators. At parks, waterfronts and youth camps, other team members may include park rangers, game wardens, marine safety officers and EMS personnel stationed at on-site advanced first aid stations.

Additional members of the safety team may work off-site and often include upper-level management personnel. Members from a variety of departments within an organization, such as communications, public relations, risk management, legal counsel and executive leadership, may play a role. These team members often become involved as soon as possible after a serious injury or death.

Even if only one lifeguard is performing patron surveillance, other safety team members on-site should be in a position to see and/or hear your emergency signal(s) and immediately respond to help in an emergency.
Sample Emergency Action Plan Flow: Water Emergency

The following two flowcharts illustrate how an EAP could be implemented. The first example depicts a situation where no additional resuscitative care is needed after the victim has been removed from the water; the second illustrates a situation where additional resuscitative care is required. Your facility’s EAPs will include decision points based on conditions found at the scene along with assigned roles and detailed instructions about how to proceed, which are based on specific circumstances and needs of the facility, such as staffing positions and levels and emergency response times.

If the victim was treated for serious injuries or illness, follow the facility EAP protocols for:

- Closing the facility.
- Contacting family members.
- Contacting the chain of command, such as supervisors or public relations personnel.
- Handling patrons and answering questions.
- Discussing the incident details.
- Operational debriefings.
Everyone needs to know his or her roles in an EAP. In a small facility, team members may be assigned several different roles, whereas in a large facility each person may have only one role.

Depending on the emergency, the number of staff available and procedures laid out in the EAP, other members of the safety team may support lifeguards by:

- Assisting with emergency rescues, if trained to do so.
- Summoning EMS personnel by calling 9-1-1 or the local emergency number.
- Bringing rescue equipment, such as a backboard or an automated external defibrillator (AED), to the scene.
- Clearing the swimming area and controlling bystanders.

Missing Person Procedure

Every aquatic facility should include missing-person procedures in its EAP. All staff should be trained in these procedures during orientation.

Time is critical when a person is missing. For example, the missing person could be someone struggling in the water or a child who wandered off and cannot be found by his or her parent. Every missing-person report is serious.

During all missing-person search procedures, one person should be in charge to avoid confusion and wasting time. This may be the lifeguard supervisor or facility manager.

Lifeguards will begin the search, but if the missing person is not found immediately, they may ask other facility staff for help and call EMS personnel for back-up. You and other staff should continue the search until EMS personnel arrive on the scene to assist with the search. You can cancel the EMS response if you find the missing person and he or she does not need medical assistance.

The facility’s EAP may include some or all of the following steps for a missing-person search:

- The lifeguard who takes the initial report should quickly alert other lifeguards about the situation. He or she then should find out the following from the patron who reported the person missing:
 - Where the person was last seen
 - How long the person has been missing
 - The person’s age
 - The person’s swimming ability
- The lifeguard should keep the reporting party with him or her until a positive identification of the missing person is made.
- A public address request for the missing person to report to a specific area may be made.
- All other lifeguards should clear the swimming areas and assist in the search, starting at the place where the missing person was last seen and expanding from there.
- If it is determined that the missing person is not in the water, lifeguards and other staff should meet in a designated location to begin an organized land search. The search should
Alerting additional safety team members.

Securing and protecting the area or evacuating the facility.

Notifying the chain of command, beginning with the lifeguard supervisor or facility manager, who then informs the appropriate individuals.

Meeting and directing EMS responders to the scene.

Collecting information for reports.

Dealing with questions from patrons or the media.

All safety team members working on-site must know where equipment is stored, including the first aid kit, AED, backboard, resuscitation equipment and disposable gloves. Certification in CPR/AED and first aid is beneficial and often include lawns, bathrooms, locker rooms, picnic areas and other play structures within the facility. Swimming areas should remain closed until it is determined that the missing person is not in the aquatic facility.

A designated lifeguard or staff member should make an announcement over the public address system describing the missing person, if appropriate. (Follow the facility’s policy as to whether or not you should describe a missing child.) Use a megaphone if necessary. Direct everyone to please stay calm and ask for volunteers, if they are needed. Ask the missing person to report to the main lifeguard area. In many cases, the person will not be aware that someone has reported him or her missing.

If the missing person is not found in the aquatic facility, facility staff or EMS personnel should call the local police department, which will take over and expand the search.

EAPs for waterfront facilities also may include the following steps:

One lifeguard should act as the lookout above the water level on a pier, raft or watercraft with rescue equipment.

Lifeguards should look under piers, rafts, floating play structures and in other dangerous locations.

Adult volunteers can help search shallow areas, but only lifeguards should search beyond chest-deep water. See Chapter 6, Water Rescue Skills, for information on sightings and cross bearings and line searches.

EAPs for camps also may include the following steps:

Staff should quickly check the missing person’s cabin or tent and other areas.

All campers should be moved to a central location where a head count should be taken.

Lifeguards should continue to search the entire waterfront until every person has been accounted for or until proper authorities take over.

EAPs for parks also may include the followings steps:

Staff should search playgrounds, campsites and wooded areas.

Park rangers, maintenance staff and volunteers can search land areas while lifeguards search the water.
is required for team members who may need to assist the lifeguard team. Safety team members also should practice with the lifeguard team by participating in emergency simulation drills (Figure 5-2).

In some situations, it may be necessary to solicit the assistance of bystanders. Although bystanders may not have the training required to handle emergencies, with direct communication and guidance they can help by controlling a crowd, relaying a message to other team members, getting equipment or summoning EMS personnel.

IMPLEMENTING AN EMERGENCY ACTION PLAN

The following section describes a typical EAP designed for a general water or land emergency. In an actual emergency, the safety team member responsible for each task would be designated in the facility’s specific EAP.

At the Onset of an Emergency

Recognize the Emergency

The first step in any EAP is recognition that an emergency is taking place in the water or on land and determine that someone needs immediate help.

Activate the EAP

Next, before leaving your station, activate the EAP by giving the prearranged signal, such as a long whistle blast, to alert other lifeguards and staff.

This step is critical. If your signal is not recognized, other lifeguards and safety team members will not realize that there is an emergency. Without their backup, your safety and the safety of patrons may be compromised.

The signals used to activate an EAP must be simple and clear. They will be predetermined based on the nature of the facility and the number of staff. One or more of the following signals are commonly used: whistles, your hands (for hand signals), public address systems, telephones, two-way radios, flags, horns, megaphones and electronic devices (buttons or switches) that must be triggered.

At a slide, the signal must alert the lifeguard stationed at the top to stop dispatching more riders. At a wave pool, pushing the emergency stop (E-stop) button stops waves.
stop (E-stop) button is required to stop the waves before attempting a rescue (Figure 5-3).

Perform a Water Rescue or Provide Emergency Care

Once you have given the signal, choose the appropriate rescue for the situation and provide care to the victim as necessary. Some rescues may require additional lifeguards to enter the water and assist with the water rescue.

CHOOSING WHERE TO WORK

It is very important that you choose your place of employment wisely. Before you accept a lifeguarding job, you should evaluate the potential working conditions. Are you going to be set up for success? Will you have the tools you need to perform your job? The best way to answer these questions is to “interview” potential employers. Just as they will ask you questions when they interview you, you should ask them questions about their facilities.

These questions should include:

- How many lifeguards will be on duty at one time?
- What is the length of lifeguard rotations?
- How many lifeguard stands are there?
- Are there scheduled meal breaks?
- Does the facility provide rescue equipment, such as rescue tubes, first aid kits and backboards?
- Does the facility provide uniforms, or are you required to purchase your own?
- Does the facility provide whistles, or are you required to provide your own?

- Has the facility established an emergency action plan (EAP)?
- Does the facility conduct new-employee orientations?
- Is there a staff manual outlining policies and procedures, and if so, is it available to you?

Single-Guard Facilities

Before accepting a job at a single-guard facility, take the time to evaluate how emergencies are handled at that site. Be sure to ask:

- Who will call EMS personnel in an emergency?
- Will another trained rescuer be available to assist you, such as to remove a passive victim from the water?

Lifeguards generally work together as a team to respond to emergency situations, so it is important for you to know how this would be accomplished with only one lifeguard on duty at a time.

You also should find out how the single-guard facility manages day-to-day activities, such as lifeguard rotations, meal breaks and general maintenance.
During the Emergency

Ensure Back-Up Zone Coverage

The lifeguard rotation should include back-up zone coverage plans that ensure back-up coverage is immediately available upon activating the EAP. For water rescues, the EAP may direct all lifeguards to stand in their chairs and adjust their zone coverage to include that of the lifeguard making the rescue. Alternatively, the plan may require lifeguards who are not on patron surveillance duty to take the rescuing lifeguard’s place at the vacant lifeguard station.

Clear the Swimming Area

Sometimes an incident is serious enough to require clearing the swimming area. The lifeguard who is providing back-up coverage—or another member of the safety team identified in the EAP—makes this judgment and signals to patrons to leave the water. With the area cleared, other staff members are able to either assist with the rescue or provide additional care.

Summon EMS Personnel

If the incident involves a life-threatening emergency, someone must summon EMS personnel by immediately calling 9-1-1 or the local emergency number. A safety team member usually makes this call, but it might be made by a patron or other bystander; so, emergency numbers and other instructions, such as the facility’s address, should be clearly displayed in the facility and at each phone (Table 5-1). In some facilities, a number, such as an 8 or 9, must be dialed first to place an outside call. This information also should be included in any instructions.

Some facilities and remote youth camps have on-site medical staff on their safety teams, such as emergency medical technicians (EMTs) or nurses. If this is the case, the facility’s EAP may direct you to contact one of these members before or instead of calling 9-1-1.

When EMS personnel arrive, a member of the safety team meets them and directs them to the scene.

Table 5-1: Sample Emergency Call Procedure: Ambulance, Fire, Police

- Call 9-1-1 or the local emergency number.
- Identify yourself.
- Explain the situation briefly (e.g., unconscious child pulled from the water).
- Explain the purpose of the call (e.g., need an ambulance, need police).

Give the location.

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Physical Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Give the location.
- Answer questions addressed to you.
- Do not hang up until the EMS call-taker tells you to do so.
Control Bystanders
You may need to control bystanders to prevent them from interfering with a rescue or emergency care. This may involve:

- Using a firm but calm voice to ask bystanders to move back so that care can be provided. Do not yell at patrons.
- Roping off areas or positioning chairs around the emergency site.
- Using the public address system to communicate with patrons.
- Repeating commands and requests as often as is necessary.
- Ensuring that EMS personnel have a clear path.
- Keeping bystanders and any children away from the rescue scene.

Any safety team member should be empowered to solicit aid from bystanders as appropriate, such as to summon EMS personnel or to help with crowd control. Always follow your facility’s policies and procedures when seeking assistance from patrons. However, emergency plans should not rely on bystander aid in lieu of adequate staffing. Bystanders are not primary response personnel.

Evacuate the Facility
In certain circumstances, such as a fire or violent situation, you may need to evacuate the facility. To evacuate everyone safely:

- Give the predetermined signal and instruct patrons to clear the pool or waterfront area.
- Follow the facility’s evacuation procedures to clear all areas of the facility, including locker rooms, lobby areas and staff rooms.
- Direct patrons to a position of safety.
- Ensure that patrons do not re-enter the facility until the facility is declared safe for re-entry. In emergency situations, EMS, fire or law enforcement personnel will inform facility staff when it is safe to re-enter.

After the Emergency

Report, Advise, Release
After the emergency has been resolved, you and other members of the safety team still have three important tasks to complete: report, advise and release.

Report the Incident
Staff members involved in the incident need to complete the appropriate incident report form as quickly as possible after providing care. Collect the required information about the victim, such as name, address and contact information, before you release the victim. After releasing the victim, you can continue filling out the information regarding the rescue. The person who made the rescue should fill out the form, recording only factual information of what was heard and seen and any action taken. Do not record personal opinions or information given to you by someone else. Depending on the circumstances, other lifeguards involved in the incident may sign your form as witnesses or fill out their own, separate forms.
TRAINING WITH EMERGENCY PERSONNEL

As a professional lifeguard, you may have the opportunity to train with local emergency medical services (EMS) personnel, including emergency medical technicians, paramedics, firefighters and law enforcement officers. These training sessions can be beneficial to both lifeguards and EMS personnel. In addition to fostering good relationships, training together gives lifeguards a better understanding of their role on the EMS team and familiarizes EMS personnel with the aquatic facility’s emergency procedures.

Your facility might offer a variety of joint in-service trainings including but not limited to:

- Medical emergency action plans and procedures.
- Emergency action plans for severe weather, and chemical and natural disasters.
- Threats to public safety and facility security.
- Types of equipment to be used during an emergency.
- Missing-person protocols for land and water.
- Public-indecency awareness.
- Demonstration of CPR/AED and lifeguarding skills.
- Practice and coordination of medical emergency action plans.
- Practice and coordination of missing person procedures.
- Practice and coordination of evacuation procedures for fire or other emergencies.
- Proper radio communications.
- Procedures for recognizing and handling suspicious behavior.

One of the benefits of these trainings is that you and your fellow lifeguards get a chance to see EMS responders in action and to practice interacting with them before an actual emergency occurs. For example, if your training session involves practicing how to transfer care to EMS personnel, you might discover that you may be expected to continue giving CPR even after EMS personnel arrive.

Likewise, EMS personnel may benefit from these training sessions by getting to see lifeguards carry out water rescues and provide emergency care. This gives EMS personnel the chance to become familiar with your skills and your facility’s equipment.

Both EMS personnel and lifeguards benefit from trainings that cover emergency action plans. By practicing EAPs in advance, both have an opportunity to address potential problems. For example, while practicing an evacuation plan you may discover that the EMS stretcher does not fit in your facility’s elevator.
Sometimes you will be responsible for requesting witness statements from bystanders, although this usually is done by a lifeguard supervisor or manager. Witnesses should write their names, addresses phone numbers and statements on separate, dated forms, describing the incident in their own words. Do not tell witnesses what to put in their statements and separate witnesses when they are completing their statements; if they are allowed to be together, they may talk to each other, which may distort their perception of the emergency.

Remember that documentation is important for legal reasons as well as for tracking when, where and how often incidents occur. Reports provide valuable information for facilities to use when they assess safety protocols, such as staffing levels or placement of lifeguard stations.

Advise the Victim

Depending on the nature of the incident, your next step may be to advise the victim. For example, you might give the victim safety instructions to prevent a similar incident from recurring or recommend that the person follow up with a health care provider. In certain cases, you might advise the person not to return to the water for a period of time. In a serious or life-threatening emergency, it may be more appropriate to have EMS or medical personnel provide the advice. Always be certain to document your actions and any advice given to the victim on the incident report.

Release the Victim

A victim may be released only when the rescue and emergency care provided by you and your safety team is complete. In some cases, you will release the person under his or her own care or to a parent, guardian, camp counselor, group leader, instructor or other staff member. In other situations, you will release the victim to the care of advanced emergency care providers, such as EMS personnel. Always be sure to document that the victim was released.

Notify the Chain of Command

The facility’s lifeguard supervisor or facility manager needs to be notified when emergencies occur. With a serious injury or death, the lifeguard supervisor or facility manager notifies the appropriate administrator(s) as soon as possible. The administrator works with responding agencies to determine who should contact the victim’s family. Your chain of command also may offer advice and guidance on what needs to be done before reopening the facility.

Check the Equipment and the Facility

All equipment and supplies used in the rescue must be inspected. You or other safety team members must report and/or replace all damaged or missing items before returning to duty. Properly clean and disinfect any equipment or areas of the facility exposed to blood or other potentially infectious materials. Use biohazard bags to dispose of contaminated materials, such as used gloves and bandages. Place all soiled clothing in marked plastic bags for disposal or cleaning. If the facility was cleared or closed during the incident, put all required equipment back in place before reopening the facility.

Remove any equipment involved in the emergency, such as a tube, sled or mat, from rotation until it is cleared by the lifeguard supervisor or facility manager.
SAMPLE INCIDENT REPORT FORM

Date: ___________ Time: ______ AM PM Day: Mon Tue Wed Thur Fri Sat Sun

Facility Data:
Facility: ______________________________ Phone Number: _____________________________
Address: ___
City: ________________________________ State: _______________ Zip: _________________

Patron Data: (complete a separate form for incidents involving more than one person)
Name: ____________________________
Phone Number: (H): ________________ (Cell): ________________
Address: ___
City: ________________________________ State: _______________ Zip: _________________
Family Contact: Name: : ______________________________________ Phone: ________________
Date of birth: ______________ Age: ___________ Gender: Male Female

Incident Data:
Location of Incident: (describe the location below and mark an X on the facility diagram)
Location: ___
Water Depth, if a water rescue: ______________
Water Conditions: ________________________
Facility Condition: _______________________
Description of Incident: (describe what happened and include any contributing factors such as unaware of depth, medical reasons, etc.): ___

Did an injury occur? Yes No
If yes, describe the type of injury: ___

Care Provided:
Did facility staff provide care? Yes No
Describe care provided in detail: ___

Patron Advised:
Describe any instructions provided to the patron: (cautioned to obey the rules, issued a life jacket, etc.)

Patron returned to activity? Yes No

Patron Released To:
Self Parent/Guardian
EMS Transported off-site Medical Facility:

Staff Information:
Name and position title of staff that provided care:
Name(s) of assisting lifeguard(s) or staff involved in incident:

Report Prepared By:
Name: _______________________________ Position: _______________________________
Signature: ____________________________ Date: ________________

Witnesses (attach witness descriptions of incident)
Name: ______________________________ Phone: ___________________________
Address: ___
City: ________________________________ State: _______________ Zip: _________________

Witnesses (attach witness descriptions of incident)
Name: _______________________________________ Phone: _____________________________
Address: ___
City: ________________________________ State: _______________ Zip: _________________

Refusal of Care:
Did victim refuse medical attention by staff? Yes No
If yes, victim (parent or guardian for a minor) signature: ______________________________

Attachments:
Note any attachments such as EMS personnel report or follow-up conversations with the victim and/or parents or guardian.
If an injured victim was put on a backboard, EMS personnel usually will use that same backboard to transport the victim to a hospital. If this occurs, ask EMS personnel to temporarily exchange backboards with the facility; otherwise, immediately replace the backboard or close the facility until a backboard is available on site. Report any missing or damaged items to the lifeguard supervisor or facility manager.

Take Corrective Action

Before reopening the facility, you or another member of the safety team should correct any problems that contributed to the incident, such as tightening a loose step on a ladder. If a problem cannot be resolved, you may need to restrict access to the unsafe area.

Return to Duty

After completing your responsibilities for the rescue, return to surveillance duty at the appropriate lifeguard station. Follow the procedures for lifeguard rotations. Inform your supervisor if you need time to regroup or are too shaken by the incident to effectively focus on surveillance.

Reopen the Facility

During or after a significant incident, the lifeguard supervisor, facility manager or another individual as identified in the EAP decides whether to close the facility temporarily and then, when to reopen. The decision may depend on safety issues, such as whether enough lifeguards are ready to return to surveillance duty, all of the required equipment is in place or spills involving blood or other potentially infectious materials have been cleaned up.

Deal with Questions

Television or newspaper reporters, insurance company representatives and attorneys may ask questions about the emergency, as may people who are just curious. Do not give out any information about the incident or injured person. Only management or a designated spokesperson should talk to the media or others about an incident; your doing so may lead to legal action. The procedure for dealing with the media and others should be laid out in the policies and procedures manual and the EAP.

If people ask questions, let them know that you are not the appropriate person to speak to regarding the incident and refer them to the manager or spokesperson. Do not discuss the emergency with anyone who is not on the facility staff, except for safety team members who are there to assist staff. If the area where the incident happened is visible from public property, you cannot prevent people from taking pictures or filming from a public area. However, facility policy may state that permission from management is necessary before anyone is allowed to take photos or film inside the facility.

Attend the Operational Debriefing

The entire safety team may attend a meeting to talk about what happened before, during and after the emergency. Avoid assigning blame or criticizing anyone’s actions or reactions. Goals of the debriefing are to:

- Examine what happened.
- Assess the effectiveness of the EAP.
CRITICAL INCIDENT STRESS

In an emergency, a person may react both physically and mentally. Physical reactions include muscles becoming more tense and the heart rate and breathing increasing. Mental and emotional stress may manifest as sleeplessness, anxiety, depression, exhaustion, restlessness, nausea or nightmares. Some effects may occur immediately, but others may appear days, weeks or even months after the incident. People react to stress in different ways, even with the same incident. Someone may not even recognize that he or she is suffering from stress or know its cause.

A critical incident may cause a strong emotional reaction and interfere with a lifeguard’s ability to cope and function during and after the incident. For lifeguards, critical incidents include:

- A patron’s death, especially the death of a child or a death following a prolonged rescue attempt.
- An event that endangers the rescuer’s life or threatens someone important to the rescuer.
- The death of a co-worker on the job.
- Any powerful emotional event, especially one that receives media coverage.

These catastrophic events are especially stressful if the lifeguard believes that he or she did something incorrectly or failed to do something—even after doing exactly what he or she was trained to do. This stress is called critical incident stress. It is a normal reaction. Someone experiencing this usually needs help to recognize, understand and cope with the stress. If this type of stress is not identified and managed, it can disrupt a lifeguard’s personal life and his or her effectiveness on the job. Facility management should help by contacting a licensed mental health professional.

- Consider new ways to prevent similar incidents.
- Be alert for stress reactions after a critical incident. If the incident involved a serious injury or death and you need assistance in coping with the experience, a licensed mental health professional may help.

EMERGENCIES OUTSIDE OF YOUR ZONE

Emergencies sometimes occur away from the water in places such as locker rooms, concession areas, entrance and lobby areas, mechanical rooms, playgrounds and play areas and parking lots.

You must be prepared to respond to these emergencies even though they are outside of the immediate aquatic environment and not part of your zone of responsibility.

If you witness or are told about an emergency when you are not on surveillance duty, you should activate the predetermined EAP signal. If the signal cannot be heard
THE NEED FOR RESCUE DATA

Training agencies, such as the American Red Cross, can gain a great deal of useful information from reviewing aquatic facilities’ rescue reports. Knowing the details about the emergencies to which lifeguards respond and the rescue methods that they use while on the job can help these agencies to determine what lifeguards and management need to know to be prepared and effective in an emergency.

As one example, the Department of Kinesiology at the University of North Carolina at Charlotte has developed a rescue reporting system to gather information for this purpose. The ultimate goal is to help the Red Cross and others learn more about what actually takes place when lifeguards are called upon to respond to an emergency. This includes details, such as:

- Environmental conditions at the time of the rescue.
- How lifeguards identified the emergency.
- Type of equipment used.

The information is gathered in a multiple-choice format and is completely anonymous. All emergencies, from a complex rescue to a simple reaching assist, can be reported. To access the survey, go to water-rescue.uncc.edu.

from your location, and you cannot or should not move the victim, you should send a patron to alert another staff member to initiate the facility’s EAP. In the meantime, size up the scene, assess the victim’s condition and give appropriate care.

You also could be summoned by other safety team members to respond to or assist with emergencies in other parts of your facility, such as a gymnasium, childcare area, cardio or weight room, sauna or park area. Whereas some of these areas might be supervised by facility staff trained in basic first aid, lifeguards might be called upon to respond in an emergency because they are trained at the professional level. Follow your facility EAPs for leaving your zone of responsibility to assist in these types of emergency situations.

WRAP-UP

EAPs are blueprints for handling emergencies. You need to know your EAP responsibilities and the roles given to all members of the safety team. Working as a team and practicing EAPs helps everyone know how to respond in an emergency and how to manage the stress it may cause.
Water Rescue Skills

You must always be prepared to enter the water to make rescues when on duty. This means that you have the proper equipment immediately available and are properly stationed to see your entire zone of responsibility. You should be scanning your zone, looking for signs indicating that someone may need help. If someone does need help, you must assess the victim’s condition, perform an appropriate rescue, move the victim to safety and provide additional care as needed.

The skills discussed in this chapter will give you the tools needed to safely perform a rescue in most aquatic environments, although the steps may need to be modified, depending on the actual situation in the water. When performing a rescue, you should keep in mind the skill steps that you have learned, but focus on the ultimate objective—to safely rescue the victim and provide appropriate care.
GENERAL PROCEDURES FOR A WATER EMERGENCY

In all situations involving a water rescue, follow these general procedures:

Activate the emergency action plan (EAP).
- Enter the water, if necessary.
- Perform an appropriate rescue.
- Move the victim to a safe exit point.
- Remove the victim from the water.
- Provide emergency care as needed.
- Report, advise and release.

Activate the Emergency Action Plan

As soon as you recognize an emergency situation, always immediately activate the EAP (Figure 6-1).

Enter the Water, if Necessary

In some cases you will be able to use a reaching assist to pull a victim to safety from a deck or pier, such as a distressed swimmer at the surface. However, in most situations you will need to enter the water to perform a successful rescue.

You must quickly evaluate and consider many factors when choosing how to safely enter the water. Each time you rotate to a new station, keep in mind the following factors as you consider how to enter the water to perform a rescue: water depth, location and condition of the victim, location of other swimmers, design of the lifeguard station, your location, facility set-up and type of equipment used (rescue board, rescue buoy or rescue tube).

Perform an Appropriate Rescue

The type of water rescue you use will depend on the victim’s condition. This includes whether the victim is active or passive, at or near the surface, submerged, or possibly has sustained an injury to the head, neck or spine. You should ensure that the victim’s airway is above the surface of the water as you move the him or her to a safe exit point.

Begin your rescue by approaching the victim. Always keep the victim or the location where you last spotted the victim within your line of sight. When swimming, always travel with the rescue tube strapped on during your approach to the victim. An exception may be a waterfront setting where additional specialty rescue equipment may be used, such as a rescue board or watercraft. You may approach the victim by:
- Walking with a rescue tube to the victim in shallow water.
- Swimming with a rescue tube to the victim.
Traveling on the deck or beach for a distance, then swimming with a rescue tube to the victim.

Paddling on a rescue board.

Navigating in a watercraft.

As you near a victim you need to maintain control and may need to reposition your rescue tube, rescue board or watercraft before making contact. For all assists and rescues when the victim is in distress or struggling, communicate directly with the person. Let the victim know that you are there to help and give any necessary instructions using short phrases. For example, say “I’m here to help. Grab the tube.”

Be aware that the victim’s condition and location can change between the time you notice the problem and when you complete your approach. For example, a victim who was struggling at the surface may begin to submerge as you approach, requiring you to use a different type of rescue than originally planned.

Move the Victim to a Safe Exit Point

After performing a water rescue, move the victim to a safe exit point. For some, this can be as simple as helping him or her to walk out of the water, such as in a simple assist. For others, it requires supporting the victim on the rescue tube while keeping his or her mouth and nose out of the water as you move to the safe exit point, such as in an active victim rear rescue.

Do not automatically return to the point where you entered; you may be able to reach another point faster. However, realize that the closest place on land may not be feasible for removing the victim: there may be limited deck space or lane ropes, or equipment or other features may block the way. Move quickly to the nearest point with appropriate access. Be sure that the chosen exit site has enough room to safely remove the victim from the water. You also will need enough space to provide any additional care needed, such as giving ventilations or CPR.

Remove the Victim from the Water

Safely remove the victim from the water. For conscious victims, this may involve simply assisting the victim out of the water. For victims who are unresponsive or victims suspected of having a head, neck or spinal injury, you will need to use a backboard or a rescue board.

Provide Emergency Care as Needed

The victim may need additional emergency care after the water rescue. This can range from helping the person regain composure to giving ventilations or performing CPR.

Report, Advise and Release

After an emergency, you and other members of the safety team must complete incident report forms, advise the victim on the next steps and release the victim to the appropriate parties. Every water rescue should have a written report. Documentation is important for legal reasons as well as for tracking when, where and how often incidents occur. After the victim is out of the water and care has been given, advise the person, as appropriate, by providing any safety instructions.
necessary to prevent the likelihood of the incident recurring. You then may release the victim to his or her own care or to a parent or guardian.

TRAIN TO THE STANDARD, MEET THE OBJECTIVE

In this course and throughout your ongoing training, you will be taught how to perform water rescues based on American Red Cross standards. You will learn these techniques in a specific manner. However, in the real world, no two aquatic emergencies are exactly alike. Actual rescue situations often are fast-moving and rapidly changing. You may not be able to follow each step exactly as you have learned and practiced. So, in an actual rescue, keep in mind the skill steps you have learned, but your primary focus should be on the overall objective—saving the victim’s life.

During this course and on the job, you must make decisions and handle situations as they occur. Keep in mind these four core objectives in any rescue situation:

- Ensure the safety of the victim, yourself and others in the vicinity. This includes the entry, approach, rescue, removal and care provided.
- Use a rescue technique that is appropriate and effective for the situation.
- Provide an appropriate assessment, always treating life-threatening conditions first.
- Handle the rescue with a sense of urgency.

RESCUE SKILLS

This section contains summaries of water rescue skills that will be taught in this course, along with the objectives specific to each type of skill. Skill sheets describing the skill steps are located at the end of the chapter.

Entries

The objective of entries is to get in the water quickly and safely, with rescue equipment, and begin approaching the victim (Figure 6-2). It may not be safe to enter the water from an elevated lifeguard stand if your zone is crowded or due to the design or position of the stand. You may need to climb down and travel along the deck or shore before entering the water. The type of entry used depends on:

- The depth of the water.
- The height and position of the lifeguard station (elevated or at ground level).
- Obstacles in the water, such as people, lane lines and safety lines.
- The location and condition of the victim.
- The type of rescue equipment.
- The design of the facility.

There are several ways to enter the water for a rescue:

- **Slide-in entry.** The slide-in entry is slower than other entries,
but it is the safest in most conditions. This technique is useful in shallow water, crowded pools or when a victim with a head, neck or spinal injury is close to the side of the pool or pier.

- **Stride jump.** Use the stride jump only if the water is at least 5 feet deep and you are no more than 3 feet above the water.
- **Compact jump.** You can use the compact jump to enter water from the deck or from a height, depending on the depth of the water. If jumping from a height (when you are more than 3 feet above the water, such as on a lifeguard stand or pier), the water must be at least 5 feet deep.
- **Run-and-swim entry.** To enter the water from a gradual slope—zero-depth area, such as a shoreline or wave pool—use the run-and-swim entry.

Rescue Approaches

The objective of a rescue approach is to safely, quickly and effectively move toward the victim in the water while maintaining control of the rescue tube, keeping the victim in your line of sight. The best way to swim to the victim using a rescue tube is with a modified front crawl or breaststroke (Figure 6-3, A–B). With the rescue tube under your armpits or torso, swim toward the victim with your head up, keeping the rescue tube in control at all times. For long distances or if the rescue tube slips out from under your arms or torso while you are swimming, let the tube trail behind (Figure 6-4).

If necessary, reposition the rescue tube in front of you before contacting the victim.

In shallow water, it may be quicker or easier to walk to the victim. Hold the rescue tube at your side and walk quickly toward the victim. If necessary, position the tube in front of you before contacting the victim.

Assists

The objective of an assist is to safely and effectively help a victim who is struggling in the water and move him or her to safety. Assists are the most common way that lifeguards help patrons who are in trouble in shallow water.
An assist may be required to help a patron:

- Stand up because he or she is small or has been thrown off balance, such as by landing at the bottom of a slide (Figure 6-5).
- Get to the surface when he or she is submerged in shallow water.
- Enter and exit an attraction.
- Get in or out of inner tubes or rafts.
- Reach shallow water or a ladder when he or she is tired.

You also may use an assist for a patron who is stuck on a slide or becomes frightened. In this instance, you should climb up the slide to reach the patron and talk to the patron to help calm him or her and provide direction.

If you are stationed in the water, such as when standing in a catch pool, assists can be performed quickly without interrupting patron surveillance. However, if a rescue is needed instead of an assist, activate the EAP.

The most common assists include the:

- **Simple assist.** A simple assist can be used in shallow water and may be merely helping a person to stand. The simple assist also may be used to rescue a victim who is submerged in shallow water and is within reach.
- **Reaching assist from the deck.** To assist a distressed swimmer who is close to the side of the pool or a pier, use a reaching assist from the deck by extending a rescue tube within the victim’s grasp. A swimmer in distress usually is able to reach for a rescue device. However, a victim who is struggling to keep his or her mouth above the water’s surface in order to breathe may not be able to grab a rescue tube. In this case, you may need to enter the water to rescue the victim using a front or rear victim rescue.

Rescuing a Victim at or Near the Surface

The objective of rescuing a victim at or near the surface of the water is to safely and confidently support the victim using the rescue tube before the victim submerges (Figure 6-6). The victim’s airway should remain above the water while you move to a safe removal point, assess the victim’s condition and then provide the appropriate care.

Use the following rescues for victims at or near the surface of the water:

- **Active victim front rescue:** for a drowning victim who is facing toward you
- **Active victim rear rescue:** for a drowning victim who is facing away from you
- **Passive victim rear rescue:** for a drowning victim who is face-down at or near the surface in a vertical-to-horizontal position, seems unconscious and is not suspected of having a head, neck or spinal injury
Rescuing a Submerged Victim

Sometimes a drowning victim is below the surface. This could be in shallow water or in deep water beyond your reach. The objective in rescuing a submerged victim is to effectively and quickly go under water, make contact with the victim, bring him or her to the surface and support the victim on the rescue tube while maintaining an open airway (Figure 6-7, A−B). Continue to maintain an open airway while moving the victim to a safe exit point, remove the victim, assess the victim’s condition and provide appropriate care.

Use the following rescues, based on the victim’s position in the water:

- **Submerged victim in shallow water**: for a victim who is passive, submerged in shallow water and beyond your reach
- **Submerged victim in deep water**: for a victim who is submerged in deep water

An additional lifeguard may be necessary to provide assistance, especially for a deep water rescue. For example, the additional lifeguard may need to retrieve and position the rescue tube if you had to remove the strap to reach the victim.

In deep water, surface dives enable you to submerge to moderate depths to rescue or search for a submerged victim. When a victim is below the surface, you must be able to get under water or to the bottom using one of the following:

- **Feet-first surface dive**.
- **Head-first surface dive**.

Multiple-Victim Rescue

Sometimes two or more victims need to be rescued simultaneously. This may happen, for example, when a victim grabs a nearby swimmer to try to stay above the water (Figure 6-8) or when a parent attempts to rescue a child but is overcome by the child’s strength. The objective for this rescue is the same as for any other active victim.

Several lifeguards should assist in a multiple-victim rescue, if possible. At least one lifeguard should check the bottom for possible submerged victims while other lifeguards rescue the victims at the surface.

Removal from Water

At this stage in the rescue, the objective is to safely and effectively remove the victim from the water, taking the victim’s condition into account, and to provide the appropriate care. You must
keep the victim’s airway above the water throughout the removal process (Figure 6-9).

Sometimes a victim is unconscious or too exhausted to climb out of the water, even on a ladder. The decision when and how to remove the victim should be made based on the victim’s condition and size, how soon help is expected to arrive and whether a bystander can help. If a victim needs immediate first aid, such as ventilations or CPR, remove him or her from the water immediately and make sure that emergency medical services (EMS) personnel have been summoned. If you suspect that the victim has an injury to the head, neck or spine and the victim is breathing, special removal techniques are used to remove the victim (see Chapter 11, Caring for Head, Neck and Spinal Injuries).

Use one of the following techniques to remove a victim from the water:

- **Two-person removal from the water.** To perform the two-person removal from the water, use a backboard at the side of a pool or pier.
- **Walking assist.** Use the walking assist to help a conscious victim walk out of shallow water.
- **Beach drag.** On a gradual slope from a waterfront beach or zero-depth entry, the beach drag is a safe, easy way to remove someone who is unconscious or who cannot walk from the water. Do not use this technique if you suspect an injury to the head, neck or spine.
- **Front-and-back carry.** In a waterfront beach or zero-depth entry, two rescuers can use the front-and-back carry in shallow water if the person is unconscious or cannot get out of the water without help. Do not use this technique if you suspect an injury to the victim’s head, neck or spine.

ADDITIONAL RESCUE SKILLS FOR WATERFRONTS

Using a Rescue Board

At some waterfronts, a rescue board is used to patrol the outer boundaries of a swimming area. A rescue board also may be kept by the lifeguard stand, ready for emergency use (Figure 6-10). If the facility uses a rescue board, learn how to carry the board effectively, paddle quickly and maneuver the board in all conditions. Wind, water currents and waves affect how you will be able to handle the board. Practice using a rescue board often to maintain your skills. Keep the board clean of suntan lotion and body oils, which can make it slippery.

The objective when using a rescue board is to reach the victim quickly, safely make contact, place the victim on the board and return to shore (Figure 6-11). If the victim is unconscious, loading the victim on the rescue board can be challenging. Depending on variables, including distance from shore, the rescue board
may not be the most efficient method of rescue. Follow facility protocols for the use of the rescue board. When possible, multiple rescuers should assist in getting the victim to shore. Depending on variables, including distance from shore, the rescue board may not be the most efficient method of rescue. Follow facility protocols for the use of the rescue board.

Several skills are involved when using a rescue board:

- Approaching a victim on a rescue board
- Rescuing an active victim with a rescue board
- Rescuing a passive victim with a rescue board

Using Watercraft for Rescues

If your facility uses watercraft for rescues, you should practice to become skilled in managing them in all rescue situations and all weather conditions. The facility must train lifeguards in the use of the watercraft (Figure 6-12). Refer to the skill sheets at the end of this chapter for general guidelines on the use of various watercraft.

SPECIAL SITUATIONS AT WATERFRONTS

Sightings and Cross Bearings

When a drowning victim submerges at a waterfront, you must swim or paddle to his or her last-seen position. Take a sighting or a cross bearing to keep track of where the victim went underwater.

To take a sighting:

1. Note where the victim went underwater.
2. Line up this place with an object on the far shore, such as a piling, marker buoy, tree, building or anything that is identifiable. Ideally, the first object should be lined up with a second object on the shore (Figure 6-13). This will help you to maintain a consistent direction when swimming, especially if there is a current.
3. Note the victim’s distance from the shore along that line.

With two lifeguards, a cross bearing can be used. To take a cross bearing:

1. Have each lifeguard take a sighting on the spot
THROW BAGS

The throw bag, or rescue bag, is a throwing device often carried by paddlers, kayakers and swift-water rescue teams. It also may be used at swimming facilities, particularly in rescue watercraft. The throw bag is a nylon bag that holds a foam disk and coiled line inside. The disk gives the bag its shape and keeps it from sinking, but it does not provide floatation for someone in the water. Some bags have cord locks that are attached to hold the line in the bag. Those should be loosened before use.

To use a throw bag, you should hold the loop at the end of the line in one hand and throw the bag underhand with the other. Try to get the attention of the swimmer before you toss and throw the bag so that the line lands across the victim’s shoulder or slightly in front. The line plays out of the bag as it travels through the air. Tell the victim to grab onto the line and hold onto it. Pull the victim to safety. You may use an overhand toss for more distance or to throw over bushes along the shore. As with a ring buoy, always consider wind conditions and water current when using a throw bag.

A throw bag probably is the easiest way to throw a line. It has the advantage of being ready for use at all times. The line is unlikely to tangle during storage or transport. If the first toss misses, then the rope is used as a regular heaving line with weight provided by the bag partially filled with water. It is not easy to quickly re-stuff a wet line for a second throw. With all rescue equipment at a facility, you participate in the in-service training and practice to become proficient in the use of throw bags.

where the victim was last seen from a different angle (Figure 6-14).

2. Ask other people to help out as spotters from shore.

3. Have both lifeguards swim toward the victim along their sight lines.

4. Have both lifeguards check spotters on shore for directions. Spotters communicate with megaphones, whistles or hand signals.

5. Identify the point where the two sight lines cross. This is the approximate location where the victim went underwater.

If a person is reported as missing in or near the water, or you have attempted and are unable to locate a victim after submersion, a search is necessary.
Searching Shallow-Water Areas

To search shallow-water areas where the bottom cannot be seen:

1. Have a lifeguard oversee the search.
2. Ask adult volunteers and staff to link their arms and hold hands to form a line in the water. The shortest person should be in the shallowest water, and the tallest person should be in water no more than chest deep (Figure 6-15).
3. Have the whole line slowly move together across the area, starting where the missing person was last seen.
4. As the line moves forward, have searchers sweep their feet across the bottom with each step. If there is a current, walk downstream with the current. A typical search pattern is shown in Figure 6-16.
5. Have only trained lifeguards search deeper areas.

Searching Deep-Water Areas

Surface Dives

Feet-first and head-first surface dives enable lifeguards to submerge to moderate depths to search for a submerged victim.

Deep-Water Line Searches

The deep-water line search is used in water greater than chest deep when the bottom cannot be seen from the surface. The search should start at the point where the victim was last seen in the water. This point should be marked on the shoreline.

1. Wearing masks and fins, several lifeguards form a straight line an arm’s length from each other (Figure 6-17).
2. One lifeguard should serve as the safety lookout above the water level on a pier, raft or watercraft with rescue equipment in case a searcher gets in trouble or the missing person is found.
3. On command from the lead lifeguard, all lifeguards perform the same type of surface dive (feet-first or head-first) to the bottom and swim forward a predetermined number of strokes—usually three. If the water is murky, searchers check the bottom by sweeping their hands back and forth in front of them, making sure to cover the entire area. To keep the water from becoming cloudier, try to avoid disturbing silt and dirt on the bottom. Be sure not to miss any areas on the bottom when diving and resurfacing.
4. Lifeguards should return to the surface as straight up as possible.

5. The lead lifeguard accounts for all searchers, re-forms the line at the position of the person farthest back and backs up the line one body length. On command, the team dives again.

6. Lifeguards repeat this procedure until the victim is found or the entire area has been searched. Figure 6-18 shows one example of a search pattern: lifeguards move the line in one direction to the boundary of the search area, then turn at a 90-degree angle to the first line and repeat the sequence as necessary.

7. If the missing person is not found, lifeguards expand the search to nearby areas. Consider whether currents may have moved the victim.

8. Lifeguards continue to search until the person is found, emergency personnel take over or the search has been called off by officials.

9. If a lifeguard finds the victim, the lifeguard should bring the victim up by grasping the victim under the armpit and returning to the surface. Swim the victim to safety, keeping the victim on his or her back, with his or her face out of the water. A lifeguard with equipment should take over to maintain an open airway while moving the victim to safety. Remove the victim from the water, assess the victim's condition and provide appropriate care.

Mask and Fins

A mask and fins should be used in an underwater search for a missing person at a waterfront (Figure 6-19). Use well-maintained equipment that is sized properly and fits you well.

Mask

A mask is made of soft, flexible material, with non-tinted, tempered safety glass and a head strap that is easily adjusted. Choose a mask that allows blocking or squeezing of the nose to equalize pressure. Some masks have additional features, such as molded nosepieces or purge valves. Regardless of the design, a proper fit is essential: a good fit prevents water from leaking into the mask. Each lifeguard at a waterfront facility should have a mask that fits his or her face.

To check that a mask fits properly:

1. Place the mask against your face without using the strap. Keep hair out of the way.

2. Inhale slightly through your nose to create a slight suction inside the mask. This suction should keep the mask in place without being held.

3. Adjust the strap so that the mask is comfortable. The strap should be placed on the crown of the head for a proper fit. If it is too tight or too loose, the mask may not seal properly.

4. Try the mask in the water. If it leaks a little, adjust how the strap sits on the back of your head and tighten the strap if needed. If the mask continues to leak, check it again with suction. A different size may be needed if the leaking persists.
To prevent the mask from fogging, rub saliva on the inside of the face plate and rinse the mask before putting it on. Commercial defoggers also can be used.

If your mask starts to fill with water while you are submerged, you can remove the water by pressing the palm of one hand against the top of your mask, which loosens the bottom seal. At the same time, blow air out of your nose and tilt your head slightly to push the water out. Alternatively, you can pull the bottom of the mask away from your face to break the seal, ensuring that the top part still is firm against your face, and blow air out of your nose. If your mask has a purge valve, blow air out of your nose and excess water exits via the purge valve.

Fins

Fins provide more speed and allow users to cover greater distances with less effort. A good fit is important for efficient movement. Fins come in different sizes to fit the foot; the blades also differ in size. Fins with larger blades enable the person to swim faster but require more leg strength. Fins should match your strength and swimming ability. Each lifeguard at a waterfront facility should have fins that fit his or her feet.

EQUALIZING PRESSURE UNDERWATER

As you descend into deep water, water pressure increases and presses against the empty spaces in your skull, especially those inside your ears. This can cause pain or even injury. To relieve this pressure, you need to force more air into the empty spaces so that the air pressure matches the water pressure. This is called “equalizing.” Be sure that you equalize early and often by taking the following steps:

1. Place your thumb and finger on your nose or on the nosepiece of your mask if you are wearing one.
2. Pinch your nose and keep your mouth shut. Try to exhale gently through your nose until the pressure is relieved.
3. Repeat this as needed to relieve ear pressure. If your ears hurt, do not attempt to go deeper until successfully equalizing the pressure.
4. If you are using a mask when descending, the increased water pressure will cause the mask to squeeze your face. To relieve the squeezing, exhale a small amount of air through your nose into the mask.

If you are unable to equalize the pressure because of a head cold or sinus problem, you should return to the surface rather than risk an injury.
Wetting your feet and the fins first makes it easier to put them on. Do not pull the fins on by the heels or straps of the fins. This can cause a break or tear. Push your foot into the fin, and then slide the fin’s back or strap up over your heel.

Use a modified flutter kick when swimming with fins. The kicking action is deeper and slower, with a little more knee bend, than the usual flutter kick. Swimming underwater is easier if you use your legs only, not your arms; keep your arms relaxed at your side. In murky water, hold your arms out in front to protect your head and feel for the victim.

Entering the Water with Mask and Fins

It is important to learn how to enter the water safely while wearing equipment. You should enter using a slide-in entry or with a stride jump when entering from a height of less than 3 feet. Never enter head-first wearing a mask and fins. If entering the water from a sloping beach, carry the fins until you are thigh-deep in the water and then put them on.

To do a stride jump with mask and fins:

1. Put one hand over the mask to hold it in place, keeping your elbow close to your chest. Keep your other hand at your side.
2. Make sure no swimmers or other objects are below.
3. Step out with a long stride over the water but do not lean forward (Figure 6-20). The fins will slow your downward motion as you enter the water.
4. Swim keeping your arms at the side and face in the water or hold your arms out in front to protect your head if visibility underwater is poor.

WHEN THINGS DO NOT GO AS PRACTICED

Even with the best preparations and practice, circumstances sometimes may require you to deviate from your facility’s EAP during an emergency. The skills in this section are designed to help you deal with some of those situations that may affect your safety or could significantly delay life saving care. Your facility must determine under what circumstances these additional emergency skills can be used. Skill sheets are located at the end of the chapter.

Escapes

A drowning victim may grab you if your technique is faulty or if the rescue tube slips out of position (Figure 6-21). You should always hold onto the rescue tube because it helps both you and the victim stay afloat. However, if you lose control of the tube and a victim grabs you, use one of the following skills to escape:

- **Front head-hold escape**: when the victim grabs you from the front.
- **Rear head-hold escape**: when the victim grabs you from behind.
COLD WATER

A serious concern at many waterfront facilities is someone suddenly entering into cold water—water that is 70 [or 77]*F (21 [or 25]*C) or lower. This usually happens in one of two ways: a person falls in accidentally, or a person enters intentionally without proper protection. In some cases, a swimmer may be underwater in warmer water and suddenly enter a thermocline, a sharp change in temperature from one layer of water to another.

As a general rule, if the water feels cold, consider it to be cold. Cold water can have a serious effect on a victim and on the lifeguard making the rescue.

Sudden entry into cold water may cause the following negative reactions:

- A gasp reflex, a sudden involuntary attempt to "catch one's breath," may cause the victim to inhale water into the lungs if the face is underwater.
- If the person's face is not underwater, he or she may begin to hyperventilate. This can cause unconsciousness and lead to breathing water into the lungs.
- An increased heart rate and blood pressure can cause cardiac arrest.
- A victim who remains in the cold water may develop hypothermia, (below-normal body temperature), which can cause unconsciousness.

However, the body has several natural mechanisms that may help to increase the person's chances of survival. In cold water, body temperature begins to drop almost as soon as the person enters the water. If cold water is swallowed, the cooling is accelerated. When a person remains in cold water, the body's core temperature drops and body functions slow almost to a standstill, sharply decreasing the need for oxygen. Any oxygen in the blood is diverted to the brain and heart to maintain minimal functioning of these vital organs. Because of this response, some victims have been successfully resuscitated after being submerged in cold water for an extended period.

Rescues in Cold Water

It is important to locate and remove a victim from cold water as quickly as possible. Because you also will be affected by cold water, you should attempt the rescue without entering the water, if possible.

You can extend a rescue tube to reach the victim, but the victim might not be able to maintain a hold on the equipment because his or her hands and arms are numb from the cold.

If you must enter the water, take a rescue tube attached to a towline. A line-and-reel, which is a buoyant piece of rope or cord attached to rescue equipment, may be used to tow the lifeguard and the victim to safety. Wear body protection, such as a wetsuit, gloves, booties and hood, if possible.

When the victim is out of the water, assess his or her condition. Victims who have been submerged in cold water still may be alive even with:

- A decreased or undetectable pulse rate.
- No detectable breathing.
- Bluish skin that is cold to the touch.
- Muscle rigidity.

Begin giving ventilations or CPR, as needed, and provide first aid for hypothermia as soon as possible. The sooner the victim receives advanced medical care, the better the chances are for survival.
In-Water Ventilations

Always remove a victim who is not breathing from the water as soon as possible to provide care. However, if you cannot immediately remove the victim or if doing so will delay care, then perform in-water ventilations (Figure 6-22). Once conditions allow you to remove the victim from the water, stop ventilations, remove the victim and then resume care immediately.

Quick Removal from Shallow Water for a Small Victim

If you have rescued a passive or unconscious person who is smaller than you and a backboard is not immediately available, you may be able to lift the victim out of the water. Simply place the victim on the side, get yourself out of the water and begin providing care. Do not use this technique if you suspect a spinal injury but the victim is breathing and a backboard is on the way.

WRAP-UP

You must learn and practice water rescue skills so you will be able to effectively respond to aquatic emergencies. However, it is just as important that you to know how to adapt these skills to the actual circumstances encountered during a real-world situation. Emergencies can happen quickly, and conditions can change in an instant. In an emergency, you should perform the rescue, bring the victim to a safe exit point, remove the victim from the water and provide the appropriate care. Never jeopardize your own safety, always use rescue equipment (such as a rescue tube) and keep your eye on the ultimate objective—saving the victim’s life.
Slide-In Entry

1. Sit down on the edge facing the water. Place the rescue tube next to you or in the water.

2. Lower your body into the water feet-first.

3. Retrieve the rescue tube.

4. Place the rescue tube across your chest with the tube under your armpits, focus on the victim and begin the approach.

Stride Jump

1. Squeeze the rescue tube high against your chest with the tube under your armpits.

2. Hold the excess line to keep the line from getting caught on something when jumping into the water.

3. Leap into the water with one leg forward and the other leg back.

4. Lean slightly forward, with your chest ahead of your hips, and focus on the victim when you enter the water.
Stride Jump
continued

5. Squeeze or scissor your legs together right after they make contact with the water for upward thrust.

6. Focus on the victim and begin the approach.

Note: Use the stride jump only if the water is more than 5 feet deep and you are no more than 3 feet above the water. You may need to climb down from an elevated lifeguard station and travel on land before entering the water.

Compact Jump

1. Squeeze the rescue tube high against your chest with the tube under your armpits.

2. Hold the excess line to keep it from getting caught in the lifeguard chair or other equipment when jumping into the water.

3. Jump out and away from the lifeguard chair, pool deck or pier. In a wave pool, time the jump to land on the crest (top) of a wave.
Bend your knees and keep your feet together and flat to absorb the shock if you hit the bottom. Do not point your toes or keep your legs straight or stiff.

Let the buoyancy of the rescue tube bring you back to the surface.

Focus on the victim when surfacing and begin the approach.

Note: If you are more than 3 feet above the water, the water must be at least 5 feet deep. It may not be safe to enter the water from an elevated lifeguard stand if your zone is crowded or as a result of the design or position of the stand. You may need to climb down before entering the water.

Run-and-Swim Entry

1. Hold the rescue tube and the excess line and run into the water, lifting your knees high to avoid falling.

2. When you can no longer run, either put the rescue tube across your chest and lean forward or drop the tube to the side and start swimming, letting the rescue tube trail behind. Do not dive or plunge head-first into the water; this could cause a serious head, neck or spinal injury.
ASSISTS

Simple Assist

1. Approach the person who needs help while keeping the rescue tube between you and that person.

2. Reach across the tube and grasp the person at the armpit to help the person maintain his or her balance.
 - If the person is underwater, grasp the person under the armpits with both hands and help him or her stand up.

3. Assist the person to the exit point, if necessary.

Reaching Assist from the Deck

1. Extend the tube to the victim, keeping your body weight on your back foot and crouching to avoid being pulled into the water.
 - Remove the rescue tube strap from your shoulder if necessary to reach the victim and hold the shoulder strap in one hand and extend the tube to the victim with the other hand.

2. Tell the victim to grab the rescue tube.

3. Slowly pull the victim to safety.

Note: A swimmer in distress generally is able to reach for a rescue device. However, a victim who is struggling to keep his or her mouth above the water’s surface to breathe may not be able to grab a rescue tube. In those cases, you may need to enter the water to rescue the victim using a front or rear victim rescue.
Active Victim Front Rescue

1. Approach the victim from the front.

2. As you near the victim, grab the rescue tube from under your arms with both hands and begin to push the tube out in front of you. Continue kicking to maintain momentum.

3. Thrust the rescue tube slightly under water and into the victim’s chest, keeping the tube between you and the victim. Encourage the victim to grab the rescue tube and hold onto it.

4. Keep kicking, fully extend your arms and move the victim to a safe exit point. Change direction, if needed.
Active Victim Rear Rescue

1. Approach the victim from behind with the rescue tube across your chest.

2. With both arms, reach under the victim’s armpits and grasp the shoulders firmly. Tell the victim that you are there to help and continue to reassure the victim throughout the rescue.

3. Using your chest, squeeze the rescue tube between your chest and the victim’s back.

4. Keep your head to one side to avoid being hit by the victim’s head if it moves backwards.

5. Lean back and pull the victim onto the rescue tub.
Use the rescue tube to support the victim so that the victim’s mouth and nose are out of the water.

Tow the victim to a safe exit point.

Passive Victim Rear Rescue

1. Approach a face-down victim from behind with the rescue tube across your chest.

2. With both arms, reach under the victim’s armpits and grasp the shoulders firmly. You may be high on the victim’s back when doing this.

3. Using your chest, squeeze the rescue tube between your chest and the victim’s back.

4. Keep your head to one side to avoid being hit by the victim’s head if it moves backwards.

5. Roll the victim over by dipping your shoulder and rolling onto your back so that the victim is face-up on top of the rescue tube. Keep the victim’s mouth and nose out of the water. Place the tube under the victim below the shoulders so that the victim’s head naturally falls back to an open-airway position.

Continued on Next Page
Tow the victim to a safe exit point. For greater distances, use one hand to stroke. For example, reach the right arm over the victim’s right shoulder and grasp the rescue tube. Then use the left hand to stroke.

Remove the victim from the water, assess the victim’s condition and provide appropriate care.
MULTIPLE-VICTIM RESCUE

If you are the only lifeguard rescuing two victims who are clutching each other:

1. Approach one victim from behind.

2. With both arms, reach under the victim's armpits and grasp the shoulders. Squeeze the rescue tube between your chest and the victim's back, keeping your head to one side of the victim's head.

3. Use the rescue tube to support both victims with their mouths and noses out of the water. Talk to the victims to help reassure them.

4. Support both victims until other lifeguards arrive or the victims become calm enough to assist with moving to a safe exit point.

Note: Whenever possible, more than one rescuer should assist with a multiple-victim rescue.
Submerged Victim in Shallow Water

1. Swim or quickly walk to the victim’s side. Let go of the rescue tube but keep the strap around your shoulders.

2. Submerge and reach down to grab the victim under the armpits.

3. Simultaneously pick up the victim, move forward and roll the victim face-up once surfaced.

4. Grab the rescue tube and position it under the victim’s shoulders. The victim’s head should fall back naturally into an open-airway position. If an assisting lifeguard is there with the backboard, skip this step and proceed to remove the victim from the water.

5. Move the victim to a safe exit point, remove the victim from the water, assess the victim’s condition and provide appropriate care.

Tip: *If the water depth is shallow enough, you can use the simple assist to lift the victim to the surface, then position him or her on the rescue tube, if needed, to complete the rescue.*
Feet-First Surface Dive

1. Swim to a point near the victim. Release the rescue tube but keep the strap around your shoulders.

2. Position your body vertically, then at the same time press both hands down to your sides and kick strongly to raise your body out of the water.

3. Take a breath, then let your body sink underwater as you begin to extend your arms outward with palms upward, pushing against the water to help you move downward. Keep your legs straight and together with toes pointed. Tuck your chin and turn your face to look down toward the bottom.

4. As downward momentum slows, repeat the motion of extending your arms outward and sweeping your hands and arms upward and overhead to go deeper.

5. Repeat this arm movement until you are deep enough to reach the victim.

Tips:

- *Do not release all of the air in your lungs while you are submerging; instead, exhale gently. Save some air for your return to the surface.*
- *As you descend into deep water, be sure to equalize pressure early and often.*
Feet-First Surface Dive continued

If you must swim underwater, such as for a deep-water line search, also perform the following steps:

1. When deep enough to reach the victim, tuck your body and roll to a horizontal position.

2. Extend your arms and legs and swim underwater.

Head-First Surface Dive

1. Swim to a point near the victim and release the rescue tube.

2. Gain momentum using a swimming stroke.
3. Take a breath, sweep your arms backwards to your thighs and turn them palms-down.

4. Tuck your chin to your chest and flex at the hip sharply while your arms reach downward toward the bottom.

5. Lift your legs upward, straight and together so that their weight above the water helps the descent. Get in a fully extended, streamlined body position that is almost vertical.

6. If you need to go deeper, such as for a deep-water line search, do a simultaneous arm pull with both arms to go deeper, then level out and swim forward underwater.

Tips:
- If the depth of the water is unknown or the water is murky, hold one or both arms extended over the head toward the bottom or use a feet-first surface dive.
- As you descend into deep water, be sure to equalize pressure early and often.